Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(7): 54, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452888

RESUMO

We report a study on granular matter with and without small additions of silicon oil, under low-frequency and large amplitude oscillatory shear strain under constant normal pressure, by running experiments with a rotational rheometer with a cup-and-plate geometry. We analysed the expansion with the Chebyshev polynomials of the orthogonal decomposition of stress-strain Lissajous-Bowditch loops. We found the onset of the strain amplitude for the yielding regime indicated a regime change from filament-like structures of grains to grain rearrangements for the dry granulate and from oscillations to the breaking and regeneration of liquid bridges for wet granulates. We have shown that this viscoelastic dynamics can be characterized by a noise temperature following Sollich et al. (Phys Rev Lett https://doi.org/10.1103/PhysRevLett.78.2020 , 1997). The analysis of the first harmonics of the Chebyshev expansion showed that the state of disorder of dry and wet granular matter in pre-yielding and yielding regimes involved ensembles of different inherent states; thus, each of them was governed by a different noise temperature. The higher-order harmonics of the Chebyshev expansion revealed a proportionality between the viscous nonlinearity and the variation in the elastic nonlinearity induced by the deformation, which shows the coupling between the elastic deformation and the viscous flow of mesoscopic-scale structures.


Assuntos
Pós , Temperatura , Viscosidade
2.
Polymers (Basel) ; 13(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451347

RESUMO

This article proposes a process to prepare fully bio-based elastomer nanocomposites based on polyfarnesene and cellulose nanocrystals (CNC). To improve the compatibility of cellulose with the hydrophobic matrix of polyfarnesene, the surface of CNC was modified via plasma-induced polymerization, at different powers of the plasma generator, using a trans-ß-farnesene monomer in the plasma reactor. The characteristic features of plasma surface-modified CNC have been corroborated by spectroscopic (XPS) and microscopic (AFM) analyses. Moreover, the cellulose nanocrystals modified at 150 W have been selected to reinforce polyfarnesene-based nanocomposites, synthesized via an in-situ coordination polymerization using a neodymium-based catalytic system. The effect of the different loading content of nanocrystals on the polymerization behavior, as well as on the rheological aspects, was evaluated. The increase in the storage modulus with the incorporation of superficially modified nanocrystals was demonstrated by rheological measurements and these materials exhibited better properties than those containing pristine cellulose nanocrystals. Moreover, we elucidate that the viscoelastic moduli of the elastomer nanocomposites are aligned with power-law model systems with characteristic relaxation time scales similar to commercial nanocomposites, also implying tunable mechanical properties. In this foreground, our findings have important implications in the development of fully bio-based nanocomposites in close competition with the commercial stock, thereby producing alternatives in favor of sustainable materials.

3.
RSC Adv ; 10(60): 36531-36538, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517941

RESUMO

This article proposes a method to produce bio-elastomer nanocomposites, based on polyfarnesene or polymyrcene, reinforced with surface-modified graphene oxide (GO). The surface modification is performed by grafting alkylamines (octyl-, dodecyl-, and hexadecylamine) onto the surface of GO. The successful grafting was confirmed via spectroscopic (FTIR and Raman) and X-ray diffraction techniques. The estimated grafted amines appear to be around 30 wt%, as calculated via thermogravimetric analysis, increasing the inter-planar spacing among the nanosheets as a function of alkyl length in the amine. The resulting modified GOs were then used to prepare bio-elastomer nanocomposites via in situ coordination polymerization (using a ternary neodymium-based catalytic system), acting as reinforcing additives of polymyrcene and polyfarnesene. We demonstrated that the presence of the modified GO does not affect significantly the catalytic activity, nor the microstructure-control of the catalyst, which led to high cis-1,4 content bio-elastomers (>95%). Moreover, we show via rheometry that the presence of the modified-GO expands the capacity of the elastomer to store deformation or applied stress, as well as exhibit an activation energy an order of magnitude higher.

4.
RSC Adv ; 10(60): 36539-36545, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517954

RESUMO

Towards the development of eco-friendly alternatives of elastomeric materials, which can replace petroleum-based materials, it is crucial to explore different monomers and catalytic systems in order to find the best possible combinations for specific applications. Herein, we report the synthesis of polyocimene via coordination polymerization using two different neodymium-based catalysts (NdV3 and Nd(Oi-Pr)3), activated by alkylaluminums/organoboron compounds. By varying the type of co-catalyst species, halide donors, and reaction parameters, we have demonstrated the possibility to obtain polymers with a controlled microstructure and tunable properties, in terms of molecular weight characteristics and kinetics. Our results provide important insights towards the search for the optimum catalytic system to produce bio-elastomers.

5.
ACS Macro Lett ; 6(11): 1296-1300, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650785

RESUMO

Performance and properties of materials may strongly depend on processing conditions. This is particularly so for polymers, which often have relaxation times much longer than the processing times and therefore may adopt preparation dependent nonequilibrated molecular conformations that potentially cause novel properties. However, so far it was not possible to predictably and quantitatively relate processing steps and resulting properties of polymer films. Here, we demonstrate that the behavior of polymer films, probed through dewetting, can be tuned by controlling preparation pathways, defined through a dimensionless parameter [Formula: see text], which is the appropriate preparation time normalized with the characteristic relaxation time of the polymer. We revealed scaling relations between [Formula: see text] and the amount of preparation-induced residual stresses, the corresponding relaxation time, and the probability of film rupture. Intriguingly, films of the same thickness exhibited hole nucleation densities and subsequent dewetting kinetics differing by up to an order of magnitude, indicating possibilities to adjust the desired properties of polymer films by preparing them in appropriate ways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa