Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285074

RESUMO

Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.


Assuntos
Bactérias/metabolismo , Gases/metabolismo , Isópteros/microbiologia , Microbiota , Animais , Austrália , Hidrogênio/metabolismo , Consumo de Oxigênio , Microbiologia do Solo
2.
BMC Microbiol ; 23(1): 275, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773099

RESUMO

BACKGROUND: Gut microbiota play a key role in the nutrition of many marine herbivorous fishes through hindgut fermentation of seaweed. Gut microbiota composition in the herbivorous fish Kyphosus sydneyanus (family Kyphosidae) varies between individuals and gut sections, raising two questions: (i) is community composition stable over time, especially given seasonal shifts in storage metabolites of dietary brown algae, and (ii) what processes influence community assembly in the hindgut? RESULTS: We examined variation in community composition in gut lumen and mucosa samples from three hindgut sections of K. sydneyanus collected at various time points in 2020 and 2021 from reefs near Great Barrier Island, New Zealand. 16S rRNA gene analysis was used to characterize microbial community composition, diversity and estimated density. Differences in community composition between gut sections remained relatively stable over time, with little evidence of temporal variation. Clostridia dominated the proximal hindgut sections and Bacteroidia the most distal section. Differences were detected in microbial composition between lumen and mucosa, especially at genus level. CONCLUSIONS: High variation in community composition and estimated bacterial density among individual fish combined with low variation in community composition temporally suggests that initial community assembly involved environmental selection and random sampling/neutral effects. Community stability following colonisation could also be influenced by historical contingency, where early colonizing members of the community may have a selective advantage. The impact of temporal changes in the algae may be limited by the dynamics of substrate depletion along the gut following feeding, i.e. the depletion of storage metabolites in the proximal hindgut. Estimated bacterial density, showed that Bacteroidota has the highest density (copies/mL) in distal-most lumen section V, where SCFA concentrations are highest. Bacteroidota genera Alistipes and Rikenella may play important roles in the breakdown of seaweed into useful compounds for the fish host.


Assuntos
Microbioma Gastrointestinal , Perciformes , Animais , RNA Ribossômico 16S/genética , Peixes/microbiologia , Sistema Digestório , Bactérias/genética , Bacteroidetes/genética
3.
Environ Microbiol ; 24(1): 50-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973326

RESUMO

Estuaries are depositional environments prone to terrigenous mud sedimentation. While macrofaunal diversity and nitrogen retention are greatly affected by changes in sedimentary mud content, its impact on prokaryotic diversity and nitrogen cycling activity remains understudied. We characterized the composition of estuarine tidal flat prokaryotic communities spanning a habitat range from sandy to muddy sediments, while controlling for salinity and distance. We also determined the diversity, abundance and expression of ammonia oxidizers and N2 O-reducers within these communities by amoA and clade I nosZ gene and transcript analysis. Results show that prokaryotic communities and nitrogen cycling fractions were sensitive to changes in sedimentary mud content, and that changes in the overall community were driven by a small number of phyla. Significant changes occurred in prokaryotic communities and N2 O-reducing fractions with only a 3% increase in mud, while thresholds for ammonia oxidizers were less distinct, suggesting other factors are also important for structuring these guilds. Expression of nitrogen cycling genes was substantially higher in muddier sediments, and results indicate that the potential for coupled nitrification-denitrification became increasingly prevalent as mud content increased. Altogether, results demonstrate that mud content is a strong environmental driver of diversity and N-cycling dynamics in estuarine microbial communities.


Assuntos
Estuários , Microbiota , Salinidade , Archaea/classificação , Bactérias/classificação , Sedimentos Geológicos , Nitrificação , Nitrogênio/metabolismo , Areia
4.
Artigo em Inglês | MEDLINE | ID: mdl-35907589

RESUMO

Symbiotic gut microbiota in the herbivorous marine fish Kyphosus sydneyanus play an important role in digestion by converting refractory algal carbohydrate into short-chain fatty acids. Here we characterised community composition using both 16S rRNA gene amplicon sequencing and shotgun-metagenome sequencing. Sequencing was carried out on lumen and mucosa samples (radial sections) from three axial sections taken from the hindgut of wild-caught fish. Both lumen and mucosa communities displayed distinct distributions along the hindgut, likely an effect of the differing selection pressures within these hindgut locations, as well as considerable variation among individual fish. In contrast, metagenomic sequences displayed a high level of functional similarity between individual fish and gut sections in the relative abundance of genes (based on sequencing depth) that encoded enzymes involved in algal-derived substrate degradation. These results suggest that the host gut environment selects for functional capacity in symbionts rather than taxonomic identity. Functional annotation of the enzymes encoded by the gut microbiota was carried out to infer the metabolic pathways used by the gut microbiota for the degradation of important dietary substrates: mannitol, alginate, laminarin, fucoidan and galactan (e.g. agar and carrageenan). This work provides the first evidence of the genomic potential of K. sydneyanus hindgut microbiota to convert highly refractory algal carbohydrates into metabolically useful short-chain fatty acids.


Assuntos
Microbioma Gastrointestinal , Microbiota , Perciformes , Animais , Ácidos Graxos Voláteis/farmacologia , Peixes/genética , Perciformes/genética , RNA Ribossômico 16S/genética
5.
Nucleic Acids Res ; 45(D1): D457-D465, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27799466

RESUMO

Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from >6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs are grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparing with external sequences, thus serving as an essential resource in the viral genomics community.


Assuntos
Vírus de DNA/genética , Bases de Dados Genéticas , Genoma Viral , Genômica/métodos , Metagenômica/métodos , Retroviridae/genética , Software , Microbiologia Ambiental , Interações Hospedeiro-Patógeno , Metagenoma , Análise de Sequência de DNA
6.
Environ Microbiol ; 19(8): 3152-3162, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28504344

RESUMO

We sought to test whether stream bacterial communities conform to Rapoport's Rule, a pattern commonly observed for plants and animals whereby taxa exhibit decreased latitudinal range sizes closer to the equator. Using a DNA sequencing approach, we explored the biogeography of biofilm bacterial communities in 204 streams across a ∼1000 km latitudinal gradient. The range sizes of bacterial taxa were strongly correlated with latitude, decreasing closer to the equator, which coincided with a greater than fivefold increase in bacterial taxonomic richness. The relative richness and range size of bacteria were associated with spatially correlated variation in temperature and rainfall. These patterns were observed despite enormous variability in catchment environmental characteristics. Similar results were obtained when restricting the same analyses to native forest catchments, thereby controlling for spatial biases in land use. We analysed genomic data from ∼500 taxa detected in this study, for which data were available and found that bacterial communities at cooler latitudes also tended to possess greater potential metabolic potential. Collectively, these data provide the first evidence of latitudinal variation in the range size distributions of freshwater bacteria, a trend which may be determined, in part, by a trade-off between bacterial genome size and local variation in climatic conditions.


Assuntos
Bactérias/classificação , Bactérias/genética , Tamanho do Genoma , Rios/microbiologia , Altitude , Bactérias/isolamento & purificação , Biodiversidade , Biofilmes , Genoma Bacteriano , Filogenia
7.
Appl Environ Microbiol ; 82(4): 1274-1285, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655754

RESUMO

Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium.


Assuntos
Alphaproteobacteria/enzimologia , Ligases/isolamento & purificação , Microbiota , Simbiose , Theonella/microbiologia , Acil-Butirolactonas/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Oceano Índico , Ligases/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Environ Microbiol ; 17(3): 622-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24674078

RESUMO

Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.


Assuntos
Ácido Acético/metabolismo , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Consórcios Microbianos , Sulfatos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Biodegradação Ambiental , Biodiversidade , Clostridium/genética , Clostridium/metabolismo , Comamonadaceae/classificação , Comamonadaceae/genética , Comamonadaceae/metabolismo , Deltaproteobacteria/genética , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Ecossistema , Oxirredução , Filogenia
9.
Environ Microbiol ; 16(11): 3443-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24628880

RESUMO

We reconstructed the complete 2.4 Mb-long genome of a previously uncultivated epsilonproteobacterium, Candidatus Sulfuricurvum sp. RIFRC-1, via assembly of short-read shotgun metagenomic data using a complexity reduction approach. Genome-based comparisons indicate the bacterium is a novel species within the Sulfuricurvum genus, which contains one cultivated representative, S. kujiense. Divergence between the species appears due in part to extensive genomic rearrangements, gene loss and chromosomal versus plasmid encoding of certain (respiratory) genes by RIFRC-1. Deoxyribonucleic acid for the genome was obtained from terrestrial aquifer sediment, in which RIFRC-1 comprised ∼ 47% of the bacterial community. Genomic evidence suggests RIFRC-1 is a chemolithoautotrophic diazotroph capable of deriving energy for growth by microaerobic or nitrate-/nitric oxide-dependent oxidation of S°, sulfide or sulfite or H2oxidation. Carbon may be fixed via the reductive tricarboxylic acid cycle. Consistent with these physiological attributes, the local aquifer was microoxic with small concentrations of available nitrate, small but elevated concentrations of reduced sulfur and NH(4)(+) /NH3-limited. Additionally, various mechanisms for heavy metal and metalloid tolerance and virulence point to a lifestyle well-adapted for metal(loid)-rich environments and a shared evolutionary past with pathogenic Epsilonproteobacteria. Results expand upon recent findings highlighting the potential importance of sulfur and hydrogen metabolism in the terrestrial subsurface.


Assuntos
Epsilonproteobacteria/genética , Genoma Bacteriano , Água Subterrânea/microbiologia , Sequência de Bases , Carbono/metabolismo , Sedimentos Geológicos/química , Água Subterrânea/química , Hidrogênio/metabolismo , Metagenoma , Metagenômica , Oxirredução , Plasmídeos/genética , Enxofre/metabolismo
10.
Environ Sci Technol ; 48(21): 12842-50, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25265543

RESUMO

In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy, and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxidation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Urânio/química , Poluentes Radioativos da Água/química , Bactérias/metabolismo , Biodegradação Ambiental , Colorado , Metais/metabolismo , Dados de Sequência Molecular , Oxirredução , Espectrometria por Raios X , Sulfatos/metabolismo , Espectroscopia por Absorção de Raios X
11.
ISME Commun ; 4(1): ycae047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38650708

RESUMO

Increasing evidence suggests Nitrospirota are important contributors to aquatic and subsurface nitrogen and sulphur cycles. We determined the phylogenetic and ecological niche associations of Nitrospirota colonizing terrestrial aquifers. Nitrospirota compositions were determined across 59 groundwater wells. Distributions were strongly influenced by oxygen availability in groundwater, marked by a trade-off between aerobic (Nitrospira, Leptospirillum) and anaerobic (Thermodesulfovibrionia, unclassified) lineages. Seven Nitrospirota metagenome-assembled genomes (MAGs), or populations, were recovered from a subset of wells, including three from the recently designated class 9FT-COMBO-42-15. Most were relatively more abundant and transcriptionally active in dysoxic groundwater. These MAGs were analysed with 743 other Nitrospirota genomes. Results illustrate the predominance of certain lineages in aquifers (e.g. non-nitrifying Nitrospiria, classes 9FT-COMBO-42-15 and UBA9217, and Thermodesulfovibrionales family UBA1546). These lineages are characterized by mechanisms for nitrate reduction and sulphur cycling, and, excluding Nitrospiria, the Wood-Ljungdahl pathway, consistent with carbon-limited, low-oxygen, and sulphur-rich aquifer conditions. Class 9FT-COMBO-42-15 is a sister clade of Nitrospiria and comprises two families spanning a transition in carbon fixation approaches: f_HDB-SIOIB13 encodes rTCA (like Nitrospiria) and f_9FT-COMBO-42-15 encodes Wood-Ljungdahl CO dehydrogenase (like Thermodesulfovibrionia and UBA9217). The 9FT-COMBO-42-15 family is further differentiated by its capacity for sulphur oxidation (via DsrABEFH and SoxXAYZB) and dissimilatory nitrate reduction to ammonium, and gene transcription indicated active coupling of nitrogen and sulphur cycles by f_9FT-COMBO-42-15 in dysoxic groundwater. Overall, results indicate that Nitrospirota are widely distributed in groundwater and that oxygen availability drives the spatial differentiation of lineages with ecologically distinct roles related to nitrogen and sulphur metabolism.

12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452204

RESUMO

Viruses are key members of microbial communities that exert control over host abundance and metabolism, thereby influencing ecosystem processes and biogeochemical cycles. Aquifers are known to host taxonomically diverse microbial life, yet little is known about viruses infecting groundwater microbial communities. Here, we analysed 16 metagenomes from a broad range of groundwater physicochemistries. We recovered 1571 viral genomes that clustered into 468 high-quality viral operational taxonomic units. At least 15% were observed to be transcriptionally active, although lysis was likely constrained by the resource-limited groundwater environment. Most were unclassified (95%), and the remaining 5% were Caudoviricetes. Comparisons with viruses inhabiting other aquifers revealed no shared species, indicating substantial unexplored viral diversity. In silico predictions linked 22.4% of the viruses to microbial host populations, including to ultra-small prokaryotes, such as Patescibacteria and Nanoarchaeota. Many predicted hosts were associated with the biogeochemical cycling of carbon, nitrogen, and sulfur. Metabolic predictions revealed the presence of 205 putative auxiliary metabolic genes, involved in diverse processes associated with the utilization of the host's intracellular resources for biosynthesis and transformation reactions, including those involved in nucleotide sugar, glycan, cofactor, and vitamin metabolism. Viruses, prokaryotes overall, and predicted prokaryotic hosts exhibited narrow spatial distributions, and relative abundance correlations with the same groundwater parameters (e.g. dissolved oxygen, nitrate, and iron), consistent with host control over viral distributions. Results provide insights into underexplored groundwater viruses, and indicate the large extent to which viruses may manipulate microbial communities and biogeochemistry in the terrestrial subsurface.


Assuntos
Água Subterrânea , Microbiota , Vírus , Bactérias/genética , Bactérias/metabolismo , Água Subterrânea/microbiologia , Vírus/genética , Variação Genética
13.
Environ Microbiome ; 19(1): 34, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750536

RESUMO

BACKGROUND: Plastic pollution is a severe threat to marine ecosystems. While some microbial enzymes can degrade certain plastics, the ability of the global ocean microbiome to break down diverse environmental plastics remains limited. We employed metatranscriptomic data from an international ocean survey to explore global and regional patterns in microbial plastic degradation potential. RESULTS: On a global oceanic scale, we found no significant correlation between levels of plastic pollution and the expression of genes encoding enzymes putatively identified as capable of plastic degradation. Even when looking at different regional scales, ocean depth layers, or plastic types, we found no strong or even moderate correlation between plastic pollution and relative abundances of transcripts for enzymes with presumed plastic biodegradation potential. Our data, however, indicate that microorganisms in the Southern Ocean show a higher potential for plastic degradation, making them more appealing candidates for bioprospecting novel plastic-degrading enzymes. CONCLUSION: Our research contributes to understanding the complex global relationship between plastic pollution and microbial plastic degradation potential. We reveal that the transcription of putative plastic-degrading genes in the global ocean microbiome does not correlate to marine plastic pollution, highlighting the ongoing danger that plastic poses to marine environments threatened by plastic pollution.

14.
Environ Sci Technol ; 47(12): 6500-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23713472

RESUMO

Vanadium is a commercially important metal that is released into the environment by fossil fuel combustion and mining. Despite its prevalence as a contaminant, the potential for vanadium bioremediation has not been widely studied. Injection of acetate (as a carbon source) directly into an aquifer to biostimulate contaminated sediments in Colorado, United States, resulted in prolonged removal of aqueous vanadium for a period of at least two years. To further investigate this process, we simultaneously added acetate and vanadate (V(5+)) to columns that were packed with aquifer sediment and inserted into groundwater wells installed on the Colorado River floodplain. This allowed evaluation of the microbial response to amendments in columns that received an influx of natural groundwater. Our results demonstrate the removal of up to 99% of the added V(5+)(aq) and suggest microbial mediation. Most probable number measurements demonstrate up to a 50-fold increase in numbers of V(5+)-reducing cells in vanadium-amended columns compared to controls. 16S rRNA gene sequencing indicates decreased diversity and selection for specific taxa in columns that received vanadate compared to those that did not. Overall, our results demonstrate that acetate amendment can be an effective strategy for V removal, and that V bioremediation may be a viable technology.


Assuntos
Biodegradação Ambiental , Vanadatos/metabolismo , Acetatos
15.
ISME Commun ; 3(1): 80, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596308

RESUMO

Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in the sediments (n = 76) of hot spring features, in the Taupo Volcanic Zone (New Zealand), spanning large differences in major anion water chemistry, pH (2.0-7.5), and temperature (17.5-92.9 °C). Community composition, based on 16S rRNA amplicon sequence variants (ASVs) was strongly influenced by both temperature and pH. However, certain lineages characterized diverse hot springs. At the domain level, bacteria and archaea shared broadly equivalent community abundances across physico-chemically diverse springs, despite slightly lower bacteria-to-archaea ratios and microbial 16S rRNA gene concentrations at higher temperatures. Communities were almost exclusively dominated by Proteobacteria, Euryarchaeota or Crenarchaeota. Eight archaeal and bacterial ASVs from Thermoplasmatales, Desulfurellaceae, Mesoaciditogaceae and Acidithiobacillaceae were unusually prevalent (present in 57.9-84.2% of samples) and abundant (1.7-12.0% sample relative abundance), and together comprised 44% of overall community abundance. Metagenomic analyses generated multiple populations associated with dominant ASVs, and showed characteristic traits of each lineage for sulfur, nitrogen and hydrogen metabolism. Differences in metabolic gene composition and genome-specific metabolism delineated populations from relatives. Genome coverage calculations showed that populations associated with each lineage were distributed across a physicochemically broad range of hot springs. Results imply that certain bacterial and archaeal lineages harbor different population structures and metabolic potentials for colonizing diverse hot spring environments.

16.
ISME Commun ; 3(1): 13, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36808147

RESUMO

Aquifers are populated by highly diverse microbial communities, including unusually small bacteria and archaea. The recently described Patescibacteria (or Candidate Phyla Radiation) and DPANN radiation are characterized by ultra-small cell and genomes sizes, resulting in limited metabolic capacities and probable dependency on other organisms to survive. We applied a multi-omics approach to characterize the ultra-small microbial communities over a wide range of aquifer groundwater chemistries. Results expand the known global range of these unusual organisms, demonstrate the wide geographical range of over 11,000 subsurface-adapted Patescibacteria, Dependentiae and DPANN archaea, and indicate that prokaryotes with ultra-small genomes and minimalistic metabolism are a characteristic feature of the terrestrial subsurface. Community composition and metabolic activities were largely shaped by water oxygen content, while highly site-specific relative abundance profiles were driven by a combination of groundwater physicochemistries (pH, nitrate-N, dissolved organic carbon). We provide insights into the activity of ultra-small prokaryotes with evidence that they are major contributors to groundwater community transcriptional activity. Ultra-small prokaryotes exhibited genetic flexibility with respect to groundwater oxygen content, and transcriptionally distinct responses, including proportionally greater transcription invested into amino acid and lipid metabolism and signal transduction in oxic groundwater, along with differences in taxa transcriptionally active. Those associated with sediments differed from planktonic counterparts in species composition and transcriptional activity, and exhibited metabolic adaptations reflecting a surface-associated lifestyle. Finally, results showed that groups of phylogenetically diverse ultra-small organisms co-occurred strongly across sites, indicating shared preferences for groundwater conditions.

17.
Database (Oxford) ; 20222022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266524

RESUMO

The number of publications reporting putative plastic-degrading microbes and proteins is continuously increasing, necessitating the compilation of these data and the development of tools to facilitate their analysis. We developed the PlasticDB web application to address this need, which comprises a database of microorganisms and proteins reported to biodegrade plastics. Associated metadata, such as the techniques utilized to assess biodegradation, the environmental source of microbial isolate and presumed thermophilic traits are also reported. Proteins in the database are categorized according to the plastic type they are reported to degrade. Each protein structure has been predicted in silico and can be visualized or downloaded for further investigation. In addition to standard database functionalities, such as searching, filtering and retrieving database records, we implemented several analytical tools that accept inputs, including gene, genome, metagenome, transcriptomes, metatranscriptomes and taxa table data. Users can now analyze their datasets for the presence of putative plastic-degrading species and potential plastic-degrading proteins and pathways from those species. Database URL:http://plasticdb.org.


Assuntos
Metagenoma , Plásticos , Biodegradação Ambiental , Bases de Dados Factuais , Plásticos/metabolismo
18.
ISME J ; 16(11): 2561-2573, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35941171

RESUMO

The nitrogen cycle plays a major role in aquatic nitrogen transformations, including in the terrestrial subsurface. However, the variety of transformations remains understudied. To determine how nitrogen cycling microorganisms respond to different aquifer chemistries, we sampled groundwater with varying nutrient and oxygen contents. Genes and transcripts involved in major nitrogen-cycling pathways were quantified from 55 and 26 sites, respectively, and metagenomes and metatranscriptomes were analyzed from a subset of oxic and dysoxic sites (0.3-1.1 mg/L bulk dissolved oxygen). Nitrogen-cycling mechanisms (e.g. ammonia oxidation, denitrification, dissimilatory nitrate reduction to ammonium) were prevalent and highly redundant, regardless of site-specific physicochemistry or nitrate availability, and present in 40% of reconstructed genomes, suggesting that nitrogen cycling is a core function of aquifer communities. Transcriptional activity for nitrification, denitrification, nitrite-dependent anaerobic methane oxidation and anaerobic ammonia oxidation (anammox) occurred simultaneously in oxic and dysoxic groundwater, indicating the availability of oxic-anoxic interfaces. Concurrent activity by these microorganisms indicates potential synergisms through metabolite exchange across these interfaces (e.g. nitrite and oxygen). Fragmented denitrification pathway encoding and transcription was widespread among groundwater bacteria, although a considerable proportion of associated transcriptional activity was driven by complete denitrifiers, especially under dysoxic conditions. Despite large differences in transcription, the capacity for the final steps of denitrification was largely invariant to aquifer conditions, and most genes and transcripts encoding N2O reductases were the atypical Sec-dependant type, suggesting energy-efficiency prioritization. Results provide insights into the capacity for cooperative relationships in groundwater communities, and the richness and complexity of metabolic mechanisms leading to the loss of fixed nitrogen.


Assuntos
Compostos de Amônio , Desnitrificação , Amônia/metabolismo , Compostos de Amônio/metabolismo , Metano , Nitratos , Nitritos , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Oxirredução , Oxirredutases/metabolismo , Oxigênio
19.
mSystems ; 7(1): e0125521, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191775

RESUMO

Anaerobic ammonium oxidation (anammox) is important for converting bioavailable nitrogen into dinitrogen gas, particularly in carbon-poor environments. However, the diversity and prevalence of anammox bacteria in the terrestrial subsurface-a typically oligotrophic environment-are little understood. To determine the distribution and activity of anammox bacteria across a range of aquifer lithologies and physicochemistries, we analyzed 16S rRNA genes and quantified hydrazine synthase genes and transcripts sampled from 59 groundwater wells and metagenomes and metatranscriptomes from an oxic-to-dysoxic subset. Data indicate that anammox and anammox-associated bacteria (class "Candidatus Brocadiae") are prevalent in the aquifers studied, and that anammox community composition is strongly differentiated by dissolved oxygen (DO), but not ammonia/nitrite. While "Candidatus Brocadiae" diversity decreased with increasing DO, "Candidatus Brocadiae" 16S rRNA genes and hydrazine synthase (hzsB) genes and transcripts were detected across a wide range of bulk groundwater DO concentrations (0 to 10 mg/L). Anammox genes and transcripts correlated significantly with those involved in aerobic ammonia oxidation (amoA), potentially representing a major source of nitrite for anammox. Eight "Candidatus Brocadiae" genomes (63 to 95% complete), representing 2 uncharacterized families and 6 novel species, were reconstructed. Six genomes have genes characteristic of anammox, all for chemolithoautotrophy. Anammox and aerotolerance genes of up to four "Candidatus Brocadiae" genomes were transcriptionally active under oxic and dysoxic conditions, although activity was highest in dysoxic groundwater. The coexpression of nrfAH nitrite reductase genes by "Candidatus Brocadiae" suggests active regeneration of ammonia for anammox. Our findings indicate that anammox bacteria contribute to loss of fixed N across diverse anoxic-to-oxic aquifer conditions, which is likely supported by nitrite from aerobic ammonia oxidation. IMPORTANCE Anammox is increasingly shown to play a major role in the aquatic nitrogen cycle and can outcompete heterotrophic denitrification in environments low in organic carbon. Given that aquifers are characteristically oligotrophic, anammox may represent a major route for the removal of fixed nitrogen in these environments, including agricultural nitrogen, a common groundwater contaminant. Our research confirms that anammox bacteria and the anammox process are prevalent in aquifers and occur across diverse lithologies (e.g., sandy gravel, sand-silt, and volcanic) and groundwater physicochemistries (e.g., various oxygen, carbon, nitrate, and ammonium concentrations). Results reveal niche differentiation among anammox bacteria largely driven by groundwater oxygen contents and provide evidence that anammox is supported by proximity to oxic niches and handoffs from aerobic ammonia oxidizers. We further show that this process, while anaerobic, is active in groundwater characterized as oxic, likely due to the availability of anoxic niches.


Assuntos
Compostos de Amônio , Água Subterrânea , Humanos , Nitritos/metabolismo , Oxidação Anaeróbia da Amônia , RNA Ribossômico 16S/genética , Oxirredução , Bactérias/genética , Compostos de Amônio/metabolismo , Amônia/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Água Subterrânea/química , Carbono/metabolismo
20.
mSystems ; 6(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468707

RESUMO

The number of plastic-degrading microorganisms reported is rapidly increasing, making it possible to explore the conservation and distribution of presumed plastic-degrading traits across the diverse microbial tree of life. Putative degraders of conventional high-molecular-weight polymers, including polyamide, polystyrene, polyvinylchloride, and polypropylene, are spread widely across bacterial and fungal branches of the tree of life, although evidence for plastic degradation by a majority of these taxa appears limited. In contrast, we found strong degradation evidence for the synthetic polymer polylactic acid (PLA), and the microbial species related to its degradation are phylogenetically conserved among the bacterial family Pseudonocardiaceae We collated data on genes and enzymes related to the degradation of all types of plastic to identify 16,170 putative plastic degradation orthologs by mining publicly available microbial genomes. The plastic with the largest number of putative orthologs, 10,969, was the natural polymer polyhydroxybutyrate (PHB), followed by the synthetic polymers polyethylene terephthalate (PET) and polycaprolactone (PCL), with 8,233 and 6,809 orthologs, respectively. These orthologous genes were discovered in the genomes of 6,000 microbial species, and most of them are as yet not identified as plastic degraders. Furthermore, all these species belong to 12 different microbial phyla, of which just 7 phyla have reported degraders to date. We have centralized information on reported plastic-degrading microorganisms within an interactive and updatable phylogenetic tree and database to confirm the global and phylogenetic diversity of putative plastic-degrading taxa and provide new insights into the evolution of microbial plastic-degrading capabilities and avenues for future discovery.IMPORTANCE We have collated the most complete database of microorganisms identified as being capable of degrading plastics to date. These data allow us to explore the phylogenetic distribution of these organisms and their enzymes, showing that traits for plastic degradation are predominantly not phylogenetically conserved. We found 16,170 putative plastic degradation orthologs in the genomes of 12 different phyla, which suggests a vast potential for the exploration of these traits in other taxa. Besides making the database available to the scientific community, we also created an interactive phylogenetic tree that can display all of the collated information, facilitating visualization and exploration of the data. Both the database and the tree are regularly updated to keep up with new scientific reports. We expect that our work will contribute to the field by increasing the understanding of the genetic diversity and evolution of microbial plastic-degrading traits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa