Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894919

RESUMO

Fungal effector proteins are important in mediating disease infections in agriculturally important crops. These secreted small proteins are known to interact with their respective host receptor binding partners in the host, either inside the cells or in the apoplastic space, depending on the localisation of the effector proteins. Consequently, it is important to understand the interactions between fungal effector proteins and their target host receptor binding partners, particularly since this can be used for the selection of potential plant resistance or susceptibility-related proteins that can be applied to the breeding of new cultivars with disease resistance. In this study, molecular docking simulations were used to characterise protein-protein interactions between effector and plant receptors. Benchmarking was undertaken using available experimental structures of effector-host receptor complexes to optimise simulation parameters, which were then used to predict the structures and mediating interactions of effector proteins with host receptor binding partners that have not yet been characterised experimentally. Rigid docking was applied for both the so-called bound and unbound docking of MAX effectors with plant HMA domain protein partners. All bound complexes used for benchmarking were correctly predicted, with 84% being ranked as the top docking pose using the ZDOCK scoring function. In the case of unbound complexes, a minimum of 95% of known residues were predicted to be part of the interacting interface on the host receptor binding partner, and at least 87% of known residues were predicted to be part of the interacting interface on the effector protein. Hydrophobic interactions were found to dominate the formation of effector-plant protein complexes. An optimised set of docking parameters based on the use of ZDOCK and ZRANK scoring functions were established to enable the prediction of near-native docking poses involving different binding interfaces on plant HMA domain proteins. Whilst this study was limited by the availability of the experimentally determined complexed structures of effectors and host receptor binding partners, we demonstrated the potential of molecular docking simulations to predict the likely interactions between effectors and their respective host receptor binding partners. This computational approach may accelerate the process of the discovery of putative interacting plant partners of effector proteins and contribute to effector-assisted marker discovery, thereby supporting the breeding of disease-resistant crops.


Assuntos
Proteínas de Transporte , Proteínas de Plantas , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Melhoramento Vegetal , Proteínas Fúngicas/metabolismo , Ligação Proteica , Produtos Agrícolas/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047233

RESUMO

Pathogenic fungal diseases in crops are mediated by the release of effector proteins that facilitate infection. Characterising the structure of these fungal effectors is vital to understanding their virulence mechanisms and interactions with their hosts, which is crucial in the breeding of plant cultivars for disease resistance. Several effectors have been identified and validated experimentally; however, their lack of sequence conservation often impedes the identification and prediction of their structure using sequence similarity approaches. Structural similarity has, nonetheless, been observed within fungal effector protein families, creating interest in validating the use of computational methods to predict their tertiary structure from their sequence. We used Rosetta ab initio modelling to predict the structures of members of the ToxA-like and MAX effector families for which experimental structures are known to validate this method. An optimised approach was then used to predict the structures of phenotypically validated effectors lacking known structures. Rosetta was found to successfully predict the structure of fungal effectors in the ToxA-like and MAX families, as well as phenotypically validated but structurally unconfirmed effector sequences. Interestingly, potential new effector structural families were identified on the basis of comparisons with structural homologues and the identification of associated protein domains.


Assuntos
Ascomicetos , Proteínas Fúngicas/metabolismo , Melhoramento Vegetal , Virulência , Resistência à Doença , Doenças das Plantas/microbiologia
3.
BMC Genomics ; 22(1): 382, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034667

RESUMO

BACKGROUND: The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. The genome assembly of reference isolate Sn15 was first reported in 2007. P. nodorum infection is promoted by its production of proteinaceous necrotrophic effectors, three of which are characterised - ToxA, Tox1 and Tox3. RESULTS: A chromosome-scale genome assembly of P. nodorum Australian reference isolate Sn15, which combined long read sequencing, optical mapping and manual curation, produced 23 chromosomes with 21 chromosomes possessing both telomeres. New transcriptome data were combined with fungal-specific gene prediction techniques and manual curation to produce a high-quality predicted gene annotation dataset, which comprises 13,869 high confidence genes, and an additional 2534 lower confidence genes retained to assist pathogenicity effector discovery. Comparison to a panel of 31 internationally-sourced isolates identified multiple hotspots within the Sn15 genome for mutation or presence-absence variation, which was used to enhance subsequent effector prediction. Effector prediction resulted in 257 candidates, of which 98 higher-ranked candidates were selected for in-depth analysis and revealed a wealth of functions related to pathogenicity. Additionally, 11 out of the 98 candidates also exhibited orthology conservation patterns that suggested lateral gene transfer with other cereal-pathogenic fungal species. Analysis of the pan-genome indicated the smallest chromosome of 0.4 Mbp length to be an accessory chromosome (AC23). AC23 was notably absent from an avirulent isolate and is predominated by mutation hotspots with an increase in non-synonymous mutations relative to other chromosomes. Surprisingly, AC23 was deficient in effector candidates, but contained several predicted genes with redundant pathogenicity-related functions. CONCLUSIONS: We present an updated series of genomic resources for P. nodorum Sn15 - an important reference isolate and model necrotroph - with a comprehensive survey of its predicted pathogenicity content.


Assuntos
Doenças das Plantas , Proteoma , Ascomicetos , Austrália , Cromossomos , Doenças das Plantas/genética , Virulência/genética
4.
BMC Genomics ; 20(1): 385, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101009

RESUMO

BACKGROUND: Narrow-leafed lupin is an emerging crop of significance in agriculture, livestock feed and human health food. However, its susceptibility to various diseases is a major obstacle towards increased adoption. Sclerotinia sclerotiorum and Botrytis cinerea - both necrotrophs with broad host-ranges - are reported among the top 10 lupin pathogens. Whole-genome sequencing and comparative genomics are useful tools to discover genes responsible for interactions between pathogens and their hosts. RESULTS: Genomes were assembled for one isolate of B. cinerea and two isolates of S. sclerotiorum, which were isolated from either narrow-leafed or pearl lupin species. Comparative genomics analysis between lupin-derived isolates and others isolated from alternate hosts was used to predict between 94 to 98 effector gene candidates from among their respective non-conserved gene contents. CONCLUSIONS: Detection of minor differences between relatively recently-diverged isolates, originating from distinct regions and with hosts, may highlight novel or recent gene mutations and losses resulting from host adaptation in broad host-range fungal pathogens.


Assuntos
Adaptação Fisiológica , Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Lupinus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Especificidade de Hospedeiro , Virulência , Sequenciamento Completo do Genoma
5.
Plant Cell Environ ; 42(1): 6-19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603775

RESUMO

Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty.


Assuntos
Mudança Climática , Produtos Agrícolas/genética , Fabaceae/genética , Genômica , Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Genes de Plantas/genética , Genes de Plantas/fisiologia , Genômica/métodos , Melhoramento Vegetal/métodos
6.
Mol Plant Microbe Interact ; 31(8): 779-788, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29664319

RESUMO

Fungal pathogen genomes can often be divided into core and accessory regions. Accessory regions ARs) may be comprised of either ARs (within core chromosomes (CCs) or wholly dispensable (accessory) chromosomes (ACs). Fungal ACs and ARs typically accumulate mutations and structural rearrangements more rapidly over time than CCs and many harbor genes relevant to host-pathogen interactions. These regions are of particular interest in plant pathology and include host-specific virulence factors and secondary metabolite synthesis gene clusters. This review outlines known ACs and ARs in fungal genomes, methods used for their detection, their common properties that differentiate them from the core genome, and what is currently known of their various roles in pathogenicity. Reports on the evolutionary processes generating and shaping AC and AR compartments are discussed, including repeat induced point mutation and breakage fusion bridge cycles. Previously ACs have been studied extensively within key genera, including Fusarium, Zymoseptoria, and Alternaria, but are growing in frequency of observation and perceived importance across a wider range of fungal species. Recent advances in sequencing technologies permit affordable genome assembly and resequencing of populations that will facilitate further discovery and routine screening of ACs.


Assuntos
Cromossomos Fúngicos/genética , DNA Fúngico/genética , Fungos/genética , Doenças das Plantas/microbiologia , Plantas/microbiologia , Genoma Fúngico/genética
8.
BMC Genomics ; 19(1): 279, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29685100

RESUMO

BACKGROUND: Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen. RESULTS: Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb and contained a total of 13,797 annotated genes, supported by transcriptomic and proteogenomics data sets. CONCLUSIONS: Whole genome comparative analysis revealed major chromosomal segmental rearrangements and fusions, highlighting intraspecific genome plasticity in this species. Furthermore, the Ptr race classification was not supported at the whole genome level, as phylogenetic analysis did not cluster the ToxA producing isolates. This expansion of available Ptr genomics resources will directly facilitate research aimed at controlling tan spot disease.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Cromossomos Fúngicos/genética , Variação Genética , Genoma Fúngico/genética , Genômica , Triticum/microbiologia , Transferência Genética Horizontal , Genoma Mitocondrial/genética , Anotação de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico
9.
Theor Appl Genet ; 131(12): 2543-2554, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225643

RESUMO

KEY MESSAGE: This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication. The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today's crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Genoma de Planta , Lupinus/genética , Produtos Agrícolas/genética , Domesticação , Desequilíbrio de Ligação , Região do Mediterrâneo , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética
10.
Theor Appl Genet ; 131(4): 887-901, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29353413

RESUMO

KEY MESSAGE: This first pan-Mediterranean analysis of genetic diversity in wild narrow-leafed lupin revealed strong East-West genetic differentiation of populations, an historic eastward migration, and signatures of genetic adaptation to climatic variables. Most grain crops suffer from a narrow genetic base, which limits their potential for adapting to new challenges such as increased stresses associated with climate change. Plant breeders are returning to the wild ancestors of crops and their close relatives to broaden the genetic base of their crops. Understanding the genetic adaptation of these wild relatives will help plant breeders most effectively use available wild diversity. Here, we took narrow-leafed lupin (Lupinus angustifolius L.) as a model to understand adaptation in a wild crop ancestor. A set of 142 wild accessions of narrow-leafed lupin from across the Mediterranean basin were subjected to genotyping-by-sequencing using Diversity Arrays Technology. Phylogenetic, linkage disequilibrium and demographic analyses were employed to explore the history of narrow-leafed lupin within the Mediterranean region. We found strong genetic differentiation between accessions from the western and eastern Mediterranean, evidence of an historic West to East migration, and that eastern Mediterranean narrow-leafed lupin experienced a severe and recent genetic bottleneck. We showed that these two populations differ for flowering time as a result of local adaptation, with the West flowering late while the East flowers early. A genome-wide association study identified single nucleotide polymorphism markers associated with climatic adaptation. Resolving the origin of wild narrow-leafed lupin and how its migration has induced adaptation to specific regions of the Mediterranean serves as a useful resource not only for developing narrow-leafed lupin cultivars with greater resilience to a changing climate, but also as a model which can be applied to other legumes.


Assuntos
Variação Genética , Lupinus/genética , Adaptação Biológica/genética , Flores/fisiologia , Estudos de Associação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Região do Mediterrâneo , Filogenia , Polimorfismo de Nucleotídeo Único
11.
Mol Cell Proteomics ; 15(4): 1188-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26811357

RESUMO

Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.


Assuntos
Proteômica/métodos , Rhizoctonia/patogenicidade , Triticum/microbiologia , Fatores de Virulência/metabolismo , Adaptação Fisiológica , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Oxirredução , Doenças das Plantas/microbiologia , Rhizoctonia/metabolismo
12.
Plant Biotechnol J ; 15(3): 318-330, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27557478

RESUMO

Lupins are important grain legume crops that form a critical part of sustainable farming systems, reducing fertilizer use and providing disease breaks. It has a basal phylogenetic position relative to other crop and model legumes and a high speciation rate. Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is gaining popularity as a health food, which is high in protein and dietary fibre but low in starch and gluten-free. We report the draft genome assembly (609 Mb) of NLL cultivar Tanjil, which has captured >98% of the gene content, sequences of additional lines and a dense genetic map. Lupins are unique among legumes and differ from most other land plants in that they do not form mycorrhizal associations. Remarkably, we find that NLL has lost all mycorrhiza-specific genes, but has retained genes commonly required for mycorrhization and nodulation. In addition, the genome also provided candidate genes for key disease resistance and domestication traits. We also find evidence of a whole-genome triplication at around 25 million years ago in the genistoid lineage leading to Lupinus. Our results will support detailed studies of legume evolution and accelerate lupin breeding programmes.


Assuntos
Genoma de Planta/genética , Lupinus/genética , Lupinus/microbiologia , Proteínas de Plantas/genética , Resistência à Doença/genética , Resistência à Doença/fisiologia , Proteínas de Plantas/fisiologia , Poliploidia , Sintenia/genética
13.
PLoS Genet ; 10(5): e1004281, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810276

RESUMO

Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level "hypermutation" of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens.


Assuntos
Genoma Fúngico , Rhizoctonia/genética , Ilhas de CpG , Haploidia , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Transcriptoma
14.
BMC Genomics ; 17: 191, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26945779

RESUMO

BACKGROUND: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS: Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS: We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.


Assuntos
Fabaceae/microbiologia , Fusarium/genética , Genoma Fúngico , Hibridização Genômica Comparativa , Sequência Conservada , DNA Fúngico/genética , Proteínas Fúngicas/genética , Fusarium/classificação , Especificidade de Hospedeiro , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
15.
BMC Genomics ; 16: 170, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25887563

RESUMO

BACKGROUND: The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. RESULTS: CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against whole genome Sc. pombe and S. cerevisiae annotations further substantiate a 4-5% improvement in the number of correctly predicted genes. CONCLUSIONS: We demonstrate the success of a novel method of incorporating RNA-seq data into GHMM fungal gene prediction. This shows that a high quality annotation can be achieved without relying on protein homology or a training set of genes. CodingQuarry is freely available ( https://sourceforge.net/projects/codingquarry/ ), and suitable for incorporation into genome annotation pipelines.


Assuntos
Perfilação da Expressão Gênica , Genoma Fúngico , Anotação de Sequência Molecular/métodos , Análise de Sequência de RNA , Software , Genes Fúngicos , Cadeias de Markov , Modelos Genéticos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
16.
BMC Plant Biol ; 15: 106, 2015 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-25902794

RESUMO

BACKGROUND: The major proteins in lupin seeds are conglutins that have primary roles in supplying carbon, sulphur and nitrogen and energy for the germinating seedling. They fall into four families; α, ß, γ and δ. Interest in these conglutins is growing as family members have been shown to have beneficial nutritional and pharmaceutical properties. RESULTS: An in-depth transcriptome and draft genome from the narrow-leafed lupin (NLL; Lupinus angustifolius) variety, Tanjil, were examined and 16 conglutin genes were identified. Using RNAseq data sets, the structure and expression of these 16 conglutin genes were analysed across eight lupin varieties from five lupin species. Phylogenic analysis suggest that the α and γ conglutins diverged prior to lupin speciation while ß and δ members diverged both prior and after speciation. A comparison of the expression of the 16 conglutin genes was performed, and in general the conglutin genes showed similar levels of RNA expression among varieties within species, but quite distinct expression patterns between lupin species. Antibodies were generated against the specific conglutin families and immunoblot analyses were used to compare the levels of conglutin proteins in various tissues and during different stages of seed development in NLL, Tanjil, confirming the expression in the seed. This analysis showed that the conglutins were expressed highly at the mature seed stage, in all lupin species, and a range of polypeptide sizes were observed for each conglutin family. CONCLUSIONS: This study has provided substantial information on the complexity of the four conglutin families in a range of lupin species in terms of their gene structure, phylogenetic relationships as well as their relative RNA and protein abundance during seed development. The results demonstrate that the majority of the heterogeneity of conglutin polypeptides is likely to arise from post-translational modification from a limited number of precursor polypeptides rather than a large number of different genes. Overall, the results demonstrate a high degree of plasticity for conglutin expression during seed development in different lupin species.


Assuntos
Genoma de Planta , Lupinus/genética , Proteínas de Armazenamento de Sementes/genética , Transcriptoma , Lupinus/metabolismo , Dados de Sequência Molecular , Proteínas de Armazenamento de Sementes/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie , Austrália Ocidental
17.
Fungal Genet Biol ; 79: 13-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092784

RESUMO

Zymoseptoria tritici (syn. Mycosphaerella graminicola, Septoria tritici) is a haploid fungus belonging to the class Dothideomycetes. It is the causal agent of septoria leaf blotch - one of the world's most significant diseases of wheat. Here we review the genomic and bioinformatic resources that have been generated for Z. tritici. These include the whole-genome reference assembly for isolate IPO323, genome resequencing of alternate isolates, mitochondrial genome sequences, transcriptome sequences and expression data, and annotations of gene structure and function. We also highlight important advances in our fundamental knowledge of genome evolution and its effects on adaptation and pathogenicity in Z. tritici that have been facilitated by these resources.


Assuntos
Ascomicetos/genética , Biologia Computacional/métodos , Genômica/métodos , Genoma Fúngico , Transcriptoma
18.
Fungal Genet Biol ; 79: 71-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092791

RESUMO

The wheat pathogen Zymoseptoria tritici possesses a large number of accessory chromosomes that may be present or absent in its genome. The genome of the reference isolate IPO323 has been assembled to a very high standard and contains 21 full length chromosome sequences, 8 of which represent accessory chromosomes. The IPO323 reference, when combined with low-cost next-generation sequencing and bioinformatics, can be used as a powerful tool to assess the presence or absence of accessory chromosomes. We present an outline of a range of bioinformatics techniques that can be applied to the analysis of presence-absence variation among accessory chromosomes across 13 novel isolates of Z. tritici.


Assuntos
Ascomicetos/genética , Biologia Computacional , Genes Fúngicos , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Cromossomos Fúngicos
19.
Plant Biotechnol J ; 13(1): 14-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25060816

RESUMO

Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map.


Assuntos
Genes de Plantas , Lupinus/genética , Folhas de Planta/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Regulação da Expressão Gênica de Plantas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites/genética , Especificidade de Órgãos/genética , Polimorfismo Genético , Reprodutibilidade dos Testes
20.
BMC Genomics ; 15: 660, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25102932

RESUMO

BACKGROUND: Metarhizium anisopliae is an important fungal biocontrol agent of insect pests of agricultural crops. Genomics can aid the successful commercialization of biopesticides by identification of key genes differentiating closely related species, selection of virulent microbial isolates which are amenable to industrial scale production and formulation and through the reduction of phenotypic variability. The genome of Metarhizium isolate ARSEF23 was recently published as a model for M. anisopliae, however phylogenetic analysis has since re-classified this isolate as M. robertsii. We present a new annotated genome sequence of M. anisopliae (isolate Ma69) and whole genome comparison to M. robertsii (ARSEF23) and M. acridum (CQMa 102). RESULTS: Whole genome analysis of M. anisopliae indicates significant macrosynteny with M. robertsii but with some large genomic inversions. In comparison to M. acridum, the genome of M. anisopliae shares lower sequence homology. While alignments overall are co-linear, the genome of M. acridum is not contiguous enough to conclusively observe macrosynteny. Mating type gene analysis revealed both MAT1-1 and MAT1-2 genes present in M. anisopliae suggesting putative homothallism, despite having no known teleomorph, in contrast with the putatively heterothallic M. acridum isolate CQMa 102 (MAT1-2) and M. robertsii isolate ARSEF23 (altered MAT1-1). Repetitive DNA and RIP analysis revealed M. acridum to have twice the repetitive content of the other two species and M. anisopliae to be five times more RIP affected than M. robertsii. We also present an initial bioinformatic survey of candidate pathogenicity genes in M. anisopliae. CONCLUSIONS: The annotated genome of M. anisopliae is an important resource for the identification of virulence genes specific to M. anisopliae and development of species- and strain- specific assays. New insight into the possibility of homothallism and RIP affectedness has important implications for the development of M. anisopliae as a biopesticide as it may indicate the potential for greater inherent diversity in this species than the other species. This could present opportunities to select isolates with unique combinations of pathogenicity factors, or it may point to instability in the species, a negative attribute in a biopesticide.


Assuntos
Genômica , Metarhizium/genética , Controle Biológico de Vetores , Sequência de Aminoácidos , Membrana Celular/metabolismo , Elementos de DNA Transponíveis/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Metarhizium/citologia , Metarhizium/fisiologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Mutação Puntual , Sequências Repetitivas de Ácido Nucleico , Reprodutibilidade dos Testes , Análise de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Sintenia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa