Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell Mol Life Sci ; 81(1): 304, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009859

RESUMO

The autophagy-lysosomal pathway plays a critical role in the clearance of tau protein aggregates that deposit in the brain in tauopathies, and defects in this system are associated with disease pathogenesis. Here, we report that expression of Tau35, a tauopathy-associated carboxy-terminal fragment of tau, leads to lipid accumulation in cell lines and primary cortical neurons. Our findings suggest that this is likely due to a deleterious block of autophagic clearance and lysosomal degradative capacity by Tau35. Notably, upon induction of autophagy by Torin 1, Tau35 inhibited nuclear translocation of transcription factor EB (TFEB), a key regulator of lysosomal biogenesis. Both cell lines and primary cortical neurons expressing Tau35 also exhibited changes in endosomal protein expression. These findings implicate autophagic and endolysosomal dysfunction as key pathological mechanisms through which disease-associated tau fragments could lead to the development and progression of tauopathy.


Assuntos
Autofagia , Endossomos , Metabolismo dos Lipídeos , Lisossomos , Neurônios , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/genética , Lisossomos/metabolismo , Humanos , Neurônios/metabolismo , Animais , Endossomos/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos
2.
Alzheimers Dement ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994745

RESUMO

INTRODUCTION: In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS: To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS: Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION: Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.

3.
Brain Behav Immun ; 114: 414-429, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716378

RESUMO

The purinoceptor P2X7R is a promising therapeutic target for tauopathies, including Alzheimer's disease (AD). Pharmacological inhibition or genetic knockdown of P2X7R ameliorates cognitive deficits and reduces pathological tau burden in mice that model aspects of tauopathy, including mice expressing mutant human frontotemporal dementia (FTD)-causing forms of tau. However, disagreements remain over which glial cell types express P2X7R and therefore the mechanism of action is unresolved. Here, we show that P2X7R protein levels increase in human AD post-mortem brain, in agreement with an upregulation of P2RX7 mRNA observed in transcriptome profiles from the AMP-AD consortium. P2X7R protein increases mirror advancing Braak stage and coincide with synapse loss. Using RNAScope we detect P2RX7 mRNA in microglia and astrocytes in human AD brain, including in the vicinity of senile plaques. In cultured microglia, P2X7R activation modulates the NLRP3 inflammasome pathway by promoting the formation of active complexes and release of IL-1ß. In astrocytes, P2X7R activates NFκB signalling and increases production of the cytokines CCL2, CXCL1 and IL-6 together with the acute phase protein Lcn2. To further explore the role of P2X7R in a disease-relevant context, we expressed wild-type or FTD-causing mutant forms of tau in mouse organotypic brain slice cultures. Inhibition of P2X7R reduces insoluble tau levels without altering soluble tau phosphorylation or synaptic localisation, suggesting a non-cell autonomous role of glial P2X7R on pathological tau aggregation. These findings support further investigations into the cell-type specific effects of P2X7R-targeting therapies in tauopathies.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Microglia/metabolismo , RNA Mensageiro/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/metabolismo
4.
Alzheimers Dement ; 19(12): 5970-5987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768001

RESUMO

INTRODUCTION: Experimental models are essential tools in neurodegenerative disease research. However, the translation of insights and drugs discovered in model systems has proven immensely challenging, marred by high failure rates in human clinical trials. METHODS: Here we review the application of artificial intelligence (AI) and machine learning (ML) in experimental medicine for dementia research. RESULTS: Considering the specific challenges of reproducibility and translation between other species or model systems and human biology in preclinical dementia research, we highlight best practices and resources that can be leveraged to quantify and evaluate translatability. We then evaluate how AI and ML approaches could be applied to enhance both cross-model reproducibility and translation to human biology, while sustaining biological interpretability. DISCUSSION: AI and ML approaches in experimental medicine remain in their infancy. However, they have great potential to strengthen preclinical research and translation if based upon adequate, robust, and reproducible experimental data. HIGHLIGHTS: There are increasing applications of AI in experimental medicine. We identified issues in reproducibility, cross-species translation, and data curation in the field. Our review highlights data resources and AI approaches as solutions. Multi-omics analysis with AI offers exciting future possibilities in drug discovery.


Assuntos
Demência , Doenças Neurodegenerativas , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Aprendizado de Máquina
6.
Adv Exp Med Biol ; 1184: 105-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096032

RESUMO

The microtubule-associated protein tau has been identified in several intraneuronal compartments, including in association with synapses. In Alzheimer's disease, frontotemporal dementia and related tauopathies, highly phosphorylated tau accumulates as intraneuronal protein aggregates that are likely responsible for the demise of neurons and the subsequent progressive cognitive decline. However, the molecular mechanisms underlying such tau-mediated damage in the tauopathies is not fully understood. Tauopathy induces loss of synapses, which is one of the earliest structural correlates of cognitive dysfunction and disease progression. Notably, altered post-translational modifications of tau, including increased phosphorylation and acetylation, augment the mislocalisation of tau to synapses, impair synaptic vesicle release and might influence the activity-dependent release of tau from neurons. Thus, disease-associated accumulation of modified tau at the synapse adversely affects critical neuronal processes that are linked to neuronal activity and synaptic function. These findings emphasise the importance of gaining a comprehensive understanding of the diverse roles of tau at distinct intraneuronal locations. An improved knowledge of the impact of synaptic tau under physiological and pathological conditions and how tau localisation impacts on neuronal function will provide valuable insights that may lead to the development of new therapies for the tauopathies.


Assuntos
Sinapses/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Sinapses/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química
7.
EMBO Rep ; 17(9): 1326-42, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27418313

RESUMO

Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB-PTPIP51 interaction and ER-mitochondria associations. These disruptions are accompanied by perturbation of Ca(2+) uptake by mitochondria following its release from ER stores, which is a physiological read-out of ER-mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS-expressing cells; mitochondrial ATP production is linked to Ca(2+) levels. Finally, we demonstrate that the FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3ß (GSK-3ß), a kinase already strongly associated with ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Demência Frontotemporal/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Ativação Enzimática , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Mutação , Ligação Proteica , Proteína FUS de Ligação a RNA/genética
8.
Acta Neuropathol ; 133(5): 665-704, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28386764

RESUMO

Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Humanos , Doenças Neurodegenerativas/patologia , Processamento de Proteína Pós-Traducional/fisiologia , Tauopatias/patologia
9.
Acta Neuropathol ; 134(1): 129-149, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28337542

RESUMO

α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca2+ signaling and ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Animais , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Tirosina Fosfatases/metabolismo , Ratos Sprague-Dawley , alfa-Sinucleína/genética
10.
Brain ; 139(Pt 8): 2290-306, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297240

RESUMO

Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Fenilbutiratos/farmacologia , Tauopatias/tratamento farmacológico , Proteínas tau , Animais , Comportamento Animal , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tauopatias/complicações
11.
Neurobiol Dis ; 85: 1-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459111

RESUMO

Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies.


Assuntos
Axônios/metabolismo , Mitocôndrias/metabolismo , Proteínas tau/metabolismo , Animais , Axônios/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Citosol/metabolismo , Citosol/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/metabolismo , Mitocôndrias/patologia , Mutação , Fosforilação , Ratos , Proteínas tau/genética
12.
EMBO Rep ; 14(4): 389-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23412472

RESUMO

Propagation of tau pathology is linked with progressive neurodegeneration, but the mechanism underlying trans-synaptic spread of tau is unknown. We show that stimulation of neuronal activity, or AMPA receptor activation, induces tau release from healthy, mature cortical neurons. Notably, phosphorylation of extracellular tau appears reduced in comparison with intracellular tau. We also find that AMPA-induced release of tau is calcium-dependent. Blocking pre-synaptic vesicle release by tetanus toxin and inhibiting neuronal activity with tetrodotoxin both significantly impair AMPA-mediated tau release. Tau secretion is therefore a regulatable process, dysregulation of which could lead to the spread of tau pathology in disease.


Assuntos
Neurônios/metabolismo , Proteínas tau/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Córtex Cerebral/citologia , Potássio/fisiologia , Cultura Primária de Células , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
13.
J Biol Chem ; 288(21): 15418-29, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23585562

RESUMO

In Alzheimer disease (AD), the microtubule-associated protein tau is highly phosphorylated and aggregates into characteristic neurofibrillary tangles. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) 1 and 2, members of the sterile 20 family of kinases, have been shown to regulate microtubule stability and organization. Here we show that tau is a good substrate for PSK1 and PSK2 phosphorylation with mass spectrometric analysis of phosphorylated tau revealing more than 40 tau residues as targets of these kinases. Notably, phosphorylated residues include motifs located within the microtubule-binding repeat domain on tau (Ser-262, Ser-324, and Ser-356), sites that are known to regulate tau-microtubule interactions. PSK catalytic activity is enhanced in the entorhinal cortex and hippocampus, areas of the brain that are most susceptible to Alzheimer pathology, in comparison with the cerebellum, which is relatively spared. Activated PSK is associated with neurofibrillary tangles, dystrophic neurites surrounding neuritic plaques, neuropil threads, and granulovacuolar degeneration bodies in AD brain. By contrast, activated PSKs and phosphorylated tau are rarely detectible in immunostained control human brain. Our results demonstrate that tau is a substrate for PSK and suggest that this family of kinases could contribute to the development of AD pathology and dementia.


Assuntos
Doença de Alzheimer/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Motivos de Aminoácidos , Animais , Células COS , Cerebelo/metabolismo , Cerebelo/patologia , Chlorocebus aethiops , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , MAP Quinase Quinase Quinases/genética , Masculino , Neurônios/patologia , Fosforilação/genética , Proteínas Serina-Treonina Quinases , Proteínas tau/genética
14.
Hum Mol Genet ; 21(24): 5254-67, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22965877

RESUMO

Abnormal phosphorylation of the microtubule-associated protein tau in neurodegenerative disorders, including Alzheimer's disease (AD) and frontotemporal lobar degeneration, is associated with disrupted axonal transport and synaptic dysfunction ultimately manifesting as histopathological lesions of protein aggregates. Glycogen synthase kinase 3ß (GSK3ß) may be critical for the pathological hyperphosphorylation of tau. Here, we examined the role of the proteasome-associated protein Nedd8 ultimate buster 1 (NUB1) in the neuropathogenic phosphorylation and aggregation of tau. We reveal that NUB1 interacted with both tau and GSK3ß to disrupt their interaction, and abolished recruitment of GSK3ß to tau inclusions. Moreover, NUB1 reduced GSK3ß-mediated phosphorylation of tau and aggregation of tau in intracellular inclusions. Strikingly, NUB1 induced GSK3ß degradation. Deletion of the NUB1 ubiquitin-like (UBL) domain did not impair the interaction with tau and GSK3ß, and the ability to suppress the phosphorylation and aggregation of tau was not affected. However, the UBL motif was necessary for GSK3ß degradation. Deletion of the NUB1 ubiquitin-associated (UBA) domain abrogated the ability of NUB1 to interact with and degrade GSK3ß. Moreover, the UBA domain was required to suppress the aggregation of tau. Silencing of NUB1 in cells stabilized endogenous GSK3ß and exacerbated tau phosphorylation. Thus, we propose that NUB1, by regulating GSK3ß levels, modulates tau phosphorylation and aggregation, and is a key player in neurodegeneration associated with tau pathology. Moreover, NUB1 regulation of GSK3ß could modulate numerous signalling pathways in which GSK3ß is a centrally important effector.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas tau/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica , Imunoprecipitação , Fosforilação/genética , Fosforilação/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Interferência de RNA , Ratos , Proteínas tau/genética
15.
Biochem Soc Trans ; 42(5): 1321-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25233410

RESUMO

Increased production of amyloid ß-peptide (Aß) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Neurônios/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Comunicação Celular , Humanos , Neurônios/imunologia , Neurônios/metabolismo , Transdução de Sinais
16.
Sci Adv ; 10(12): eadk9884, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507480

RESUMO

Molecular chaperones are protective in neurodegenerative diseases by preventing protein misfolding and aggregation, such as extracellular amyloid plaques and intracellular tau neurofibrillary tangles in Alzheimer's disease (AD). In addition, AD is characterized by an increase in astrocyte reactivity. The chaperone HSPB1 has been proposed as a marker for reactive astrocytes; however, its astrocytic functions in neurodegeneration remain to be elucidated. Here, we identify that HSPB1 is secreted from astrocytes to exert non-cell-autonomous protective functions. We show that in human AD brain, HSPB1 levels increase in astrocytes that cluster around amyloid plaques, as well as in the adjacent extracellular space. Moreover, in conditions that mimic an inflammatory reactive response, astrocytes increase HSPB1 secretion. Concomitantly, astrocytes and neurons can uptake astrocyte-secreted HSPB1, which is accompanied by an attenuation of the inflammatory response in reactive astrocytes and reduced pathological tau inclusions. Our findings highlight a protective mechanism in disease conditions that encompasses the secretion of a chaperone typically regarded as intracellular.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Astrócitos/metabolismo , Proteínas tau/metabolismo , Placa Amiloide/patologia , Neuroproteção , Chaperonas Moleculares/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Choque Térmico/metabolismo
17.
Science ; 381(6656): 377-378, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499007

RESUMO

Tau quality control by tripartite motif 11 (TRIM11) protects neurons in mice.


Assuntos
Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas tau , Animais , Camundongos
19.
Amino Acids ; 43(3): 1075-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821266

RESUMO

Proteomic technologies have matured to a level enabling accurate and reproducible quantitation of peptides and proteins from complex biological matrices. Analysis of samples as diverse as assembled protein complexes, whole cell lysates or sub-cellular proteomes from cell cultures, and direct analysis of animal and human tissues and fluids demonstrate the incredible versatility of the fundamental nature of the technique that forms the basis of most proteomic applications today (mass spectrometry). Determining the mass of biomolecules and their fragments or related products with high accuracy can convey a highly specific assay for detection and identification. Importantly, ion currents representative of these specifically identified analytes can be accurately quantified with the correct application of smart isobaric tagging chemistries, heavy and light isotopically derivatised samples or standards, or by careful application of workflows to compare unlabelled samples in so-called 'label-free' and targeted selected reaction monitoring experiments. In terms of exploring biology, a myriad of protein changes and modifications are being increasingly probed and quantified, including diverse chemical changes from relatively decisive modifications such as protein splicing and truncation, to more transient dynamic modifications such as phosphorylation, acetylation and ubiquitination. Proteomic workflows can be complex beasts and several key considerations to ensure effective applications have been outlined in the recent literature. The past year has witnessed the publication of several excellent reviews that thoroughly describe the fundamental principles underlying the state of the art. This review further elaborates on specific critical issues introduced by these publications and raises other important unaddressed considerations and new developments that directly impact on the effectiveness of proteomic technologies, in particular for, but not necessarily exclusive to peptide-centric experiments. These factors are discussed both in terms of qualitative analyses, including dynamic range and sampling issues, and developments to improve the translation of peptide fragmentation data into peptide and protein identities, as well as quantitative analyses, including data normalisation and the utility of ontology or functional annotation, the effects of modified peptides, and considered experimental design to facilitate the use of robust statistical methods.


Assuntos
Interpretação Estatística de Dados , Mapeamento de Peptídeos , Análise de Sequência de Proteína , Animais , Humanos , Espectrometria de Massas , Fragmentos de Peptídeos/química , Proteoma/química , Proteoma/metabolismo , Proteômica
20.
Front Mol Biosci ; 8: 779240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778381

RESUMO

Tau35 is a truncated form of tau found in human brain in a subset of tauopathies. Tau35 expression in mice recapitulates key features of human disease, including progressive increase in tau phosphorylation, along with cognitive and motor dysfunction. The appearance of aggregated tau suggests that Tau35 may have structural properties distinct from those of other tau species that could account for its pathological role in disease. To address this hypothesis, we performed a structural characterization of monomeric and aggregated Tau35 and compared the results to those of two longer isoforms, 2N3R and 2N4R tau. We used small angle X-ray scattering to show that Tau35, 2N3R and 2N4R tau all behave as disordered monomeric species but Tau35 exhibits higher rigidity. In the presence of the poly-anion heparin, Tau35 increases thioflavin T fluorescence significantly faster and to a greater extent than full-length tau, demonstrating a higher propensity to aggregate. By using atomic force microscopy, circular dichroism, transmission electron microscopy and X-ray fiber diffraction, we provide evidence that Tau35 aggregation is mechanistically and morphologically similar to previously reported tau fibrils but they are more densely packed. These data increase our understanding of the aggregation inducing properties of clinically relevant tau fragments and their potentially damaging role in the pathogenesis of human tauopathies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa