Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Gastrointest Cancer ; 55(2): 483-496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38133871

RESUMO

BACKGROUND: Gastroesophageal cancer is a major cause of cancer-related mortality worldwide. Treatment of both early stage and advanced disease remains highly reliant on cytotoxic chemotherapy. About 4-24% of gastroesophageal cancers are microsatellite instability high (MSI-H). The MSI-H subtype is associated with favorable prognosis, resistance to cytotoxic chemotherapy, and sensitivity to immune checkpoint inhibitors (ICI). Recent studies have demonstrated promising activity of ICIs in the MSI-H subtype, resulting in fundamental changes in the management of MSI-H gastroesophageal adenocarcinoma. PURPOSE: In this review, we discuss the prevalence, characteristics, prognosis, and management of MSI-H gastroesophageal adenocarcinoma, with a focus on recent and ongoing studies that have changed the landscape of treatment for the MSI-H subtype. We also discuss current challenges in the management of resectable and advanced MSI-H gastroesophageal cancer, including the need for more accurate biomarkers of response to ICI therapy.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Instabilidade de Microssatélites , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/terapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/tratamento farmacológico , Prognóstico , Inibidores de Checkpoint Imunológico/uso terapêutico , Junção Esofagogástrica/patologia , Biomarcadores Tumorais/genética
2.
Sci Immunol ; 9(95): eadi4191, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728412

RESUMO

Conventional dendritic cells (DCs) are essential mediators of antitumor immunity. As a result, cancers have developed poorly understood mechanisms to render DCs dysfunctional within the tumor microenvironment (TME). After identification of CD63 as a specific surface marker, we demonstrate that mature regulatory DCs (mregDCs) migrate to tumor-draining lymph node tissues and suppress DC antigen cross-presentation in trans while promoting T helper 2 and regulatory T cell differentiation. Transcriptional and metabolic studies showed that mregDC functionality is dependent on the mevalonate biosynthetic pathway and its master transcription factor, SREBP2. We found that melanoma-derived lactate activates SREBP2 in tumor DCs and drives conventional DC transformation into mregDCs via homeostatic or tolerogenic maturation. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promoted antitumor CD8+ T cell activation and suppressed melanoma progression. CD63+ mregDCs were found to reside within the lymph nodes of several preclinical tumor models and in the sentinel lymph nodes of patients with melanoma. Collectively, this work suggests that a tumor lactate-stimulated SREBP2-dependent program promotes CD63+ mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME.


Assuntos
Células Dendríticas , Ácido Láctico , Melanoma , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Progressão da Doença , Tolerância Imunológica/imunologia , Ácido Láctico/metabolismo , Melanoma/imunologia , Melanoma/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 2/imunologia , Microambiente Tumoral/imunologia
3.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617347

RESUMO

Therapeutic resistance to immune checkpoint blockade has been commonly linked to the process of mesenchymal transformation (MT) and remains a prevalent obstacle across many cancer types. An improved mechanistic understanding for MT-mediated immune evasion promises to lead to more effective combination therapeutic regimens. Herein, we identify the Hedgehog transcription factor, Gli2, as a key node of tumor-mediated immune evasion and immunotherapy resistance during MT. Mechanistic studies reveal that Gli2 generates an immunotolerant tumor microenvironment through the upregulation of Wnt ligand production and increased prostaglandin synthesis. This pathway drives the recruitment, viability, and function of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) while also impairing type I conventional dendritic cell, CD8 + T cell, and NK cell functionality. Pharmacologic EP2/EP4 prostaglandin receptor inhibition and Wnt ligand inhibition each reverses a subset of these effects, while preventing primary and adaptive resistance to anti-PD-1 immunotherapy, respectively. A transcriptional Gli2 signature correlates with resistance to anti-PD-1 immunotherapy in stage IV melanoma patients, providing a translational roadmap to direct combination immunotherapeutics in the clinic. SIGNIFICANCE: Gli2-induced EMT promotes immune evasion and immunotherapeutic resistance via coordinated prostaglandin and Wnt signaling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa