Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(39): 34457-67, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21841002

RESUMO

The microtubule-associated protein Tau plays a critical role in the pathogenesis of Alzheimer disease and several related disorders (tauopathies). In the disease Tau aggregates and becomes hyperphosphorylated forming paired helical and straight filaments, which can further condense into higher order neurofibrillary tangles in neurons. The development of this pathology is consistently associated with progressive neuronal loss and cognitive decline. The identification of tractable therapeutic targets in this pathway has been challenging, and consequently very few clinical studies addressing Tau pathology are underway. Recent active immunization studies have raised the possibility of modulating Tau pathology by activating the immune system. Here we report for the first time on passive immunotherapy for Tau in two well established transgenic models of Tau pathogenesis. We show that peripheral administration of two antibodies against pathological Tau forms significantly reduces biochemical Tau pathology in the JNPL3 mouse model. We further demonstrate that peripheral administration of the same antibodies in the more rapidly progressive P301S tauopathy model not only reduces Tau pathology quantitated by biochemical assays and immunohistochemistry, but also significantly delays the onset of motor function decline and weight loss. This is accompanied by a reduction in neurospheroids, providing direct evidence of reduced neurodegeneration. Thus, passive immunotherapy is effective at preventing the buildup of intracellular Tau pathology, neurospheroids, and associated symptoms, although the exact mechanism remains uncertain. Tau immunotherapy should therefore be considered as a therapeutic approach for the treatment of Alzheimer disease and other tauopathies.


Assuntos
Doença de Alzheimer/terapia , Anticorpos/imunologia , Anticorpos/farmacologia , Imunização Passiva/métodos , Proteínas tau/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Substituição de Aminoácidos/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Atividade Motora/imunologia , Mutação de Sentido Incorreto/imunologia , Proteínas tau/genética
2.
Pain Rep ; 5(6): e872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274305

RESUMO

INTRODUCTION: Inflammation during the neonatal period can exacerbate pain severity following reinjury in adulthood. This is driven by alterations in the postnatal development of spinal and supraspinal nociceptive circuitry. However, the contribution of alterations in peripheral nociceptor function remains underexplored. OBJECTIVES: We examined whether neonatal complete Freund's adjuvant (CFA)-induced inflammation induced or altered adult development of hyperalgesic priming (inflammation-induced plasticity in nonpeptidergic C fibres) or altered postnatal reorganization of calcitonin gene-related peptide (CGRP)-expressing and isolectin B4 (IB4)-binding C fibres in the spinal dorsal horn (DH). METHODS: After intraplantar injection of CFA at postnatal day (P) 1, we assessed mechanical thresholds in adult (P60) rats before and after intraplantar carrageenan. One week later, intraplantar PGE2-induced hypersensitivity persisting for 4 hours was deemed indicative of hyperalgesic priming. CGRP expression and IB4 binding were examined in adult rat DH after CFA. RESULTS: P1 CFA did not alter baseline adult mechanical thresholds, nor did it change the extent or duration of carrageenan-induced hypersensitivity. However, this was slower to resolve in female than in male rats. Rats that previously received carrageenan but not saline were primed, but P1 hind paw CFA did not induce or alter hyperalgesic priming responses to PGE2. In addition, CFA on P1 or P10 did not alter intensity or patterns of CGRP or IB4 staining in the adult DH. CONCLUSION: Complete Freund's adjuvant-induced inflammation during a critical period of vulnerability to injury during early postnatal development does not induce or exacerbate hyperalgesic priming or alter the broad distribution of CGRP-expressing or IB4-binding afferent terminals in the adult dorsal horn.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa