Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 17(6): e3000334, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206517

RESUMO

Escherichia coli represents a classical intestinal gram-negative commensal. Despite this commensalism, different E. coli strains can mediate disparate immunogenic properties in a given host. Symbiotic E. coli strains such as E. coli Nissle 1917 (EcN) are attributed beneficial properties, e.g., promotion of intestinal homeostasis. Therefore, we aimed to identify molecular features derived from symbiotic bacteria that might help to develop innovative therapeutic alternatives for the treatment of intestinal immune disorders. This study was performed using the dextran sodium sulphate (DSS)-induced colitis mouse model, which is routinely used to evaluate potential therapeutics for the treatment of Inflammatory Bowel Diseases (IBDs). We focused on the analysis of flagellin structures of different E. coli strains. EcN flagellin was found to harbor a substantially longer hypervariable region (HVR) compared to other commensal E. coli strains, and this longer HVR mediated symbiotic properties through stronger activation of Toll-like receptor (TLR)5, thereby resulting in interleukin (IL)-22-mediated protection of mice against DSS-induced colitis. Furthermore, using bone-marrow-chimeric mice (BMCM), CD11c+ cells of the colonic lamina propria (LP) were identified as the main mediators of these flagellin-induced symbiotic effects. We propose flagellin from symbiotic E. coli strains as a potential therapeutic to restore intestinal immune homeostasis, e.g., for the treatment of IBD patients.


Assuntos
Escherichia coli/metabolismo , Flagelina/genética , Simbiose/genética , Animais , Colite/induzido quimicamente , Colite/imunologia , Modelos Animais de Doenças , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Flagelina/metabolismo , Mucosa Intestinal , Intestinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Simbiose/fisiologia , Receptor 5 Toll-Like/metabolismo
2.
Int J Implant Dent ; 10(1): 36, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012381

RESUMO

PURPOSE: This study aims to evaluate the amount of distortion using computer-guided implant surgery with 3D printed surgical guides in limited edentulous spaces. MATERIALS AND METHODS: 25 bone level self-tapping implants (Straumann® BL and BLT) were randomly inserted in either distal or intercalary posterior mandibular edentulism using a fully digital protocol and 3D printed surgical guides. Amount of inaccuracy was evaluated after superimposing the 3 coordinates of virtually planned and final implant images, which were obtained using intra-oral scans and scan bodies. Four evaluation parameters were considered: origo-displacement, error depth, apical displacement and angle between the planned and the placed implant. RESULTS: The average of distortion was 0.71 mm for the origo-displacement, 0.36 mm for the error depth, 0.52 mm for the horizontal displacement and 3.34º for the error angle. CONCLUSION: The major reason of exclusion was CBCT artifacts. Results of this study were aligned with the results of previous studies concerning partially edentulous spaces. CAD/CAM manufacturing process did not result in significant distortion whilst the biggest part of distortions originated from the surgical process. The learning curve in computer-guided implant surgery presented an important source of inaccuracy.


Assuntos
Arcada Parcialmente Edêntula , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Estudos Prospectivos , Arcada Parcialmente Edêntula/cirurgia , Arcada Parcialmente Edêntula/diagnóstico por imagem , Implantação Dentária Endóssea/métodos , Implantação Dentária Endóssea/instrumentação , Feminino , Masculino , Pessoa de Meia-Idade , Impressão Tridimensional , Implantes Dentários , Tomografia Computadorizada de Feixe Cônico
3.
bioRxiv ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39185178

RESUMO

Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure increased primordial follicle counts at 100 µg/kg and 100 mg/kg and decreased primary follicle counts at 100 mg/kg compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced by 1 µg/mL DEHTP and 1, 10, and 100 µg/mL MEHTP compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Steroid hormone levels and steroidogenic enzyme gene expression trended toward decreases in vivo, whereas progesterone was significantly increased by exposure to 100 µg/mL MEHTP in vitro. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates.

4.
Front Immunol ; 11: 612336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542719

RESUMO

Intestinal commensal bacteria can have a large impact on the state of health and disease of the host. Regulation of Th17 cell development by gut commensals is known to contribute to their dichotomous role in promoting gut homeostasis and host defense, or development of autoimmune diseases. Yet, the underlying mechanisms remain to be fully elucidated. One candidate factor contributing to Th17 differentiation, and the expression of which could be influenced by commensals is the atypical nuclear IκB protein IκBζ. IκBζ acts as a transcriptional regulator of the expression of Th17-related secondary response genes in many cell types including dendritic cells (DCs). Insights into the regulation of IκBζ in DCs could shed light on how these immune sentinel cells at the interface between commensals, innate and adaptive immune system drive an immune-tolerogenic or inflammatory Th17 cell response. In this study, the influence of two gut commensals of low (Bacteroides vulgatus) or high (Escherichia coli) immunogenicity on IκBζ expression in DCs and its downstream effects was analyzed. We observed that the amount of IκBζ expression and secretion of Th17-inducing cytokines correlated with the immunogenicity of these commensals. However, under immune-balanced conditions, E. coli also strongly induced an IκBζ-dependent secretion of anti-inflammatory IL-10, facilitating a counter-regulative Treg response as assessed in in vitro CD4+ T cell polarization assays. Yet, in an in vivo mouse model of T cell-induced colitis, prone to inflammatory and autoimmune conditions, administration of E. coli promoted an expansion of rather pro-inflammatory T helper cell subsets whereas administration of B. vulgatus resulted in the induction of protective T helper cell subsets. These findings might contribute to the development of new therapeutic strategies for the treatment of autoimmune diseases using commensals or commensal-derived components.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Células Th17/imunologia , Animais , Doenças Autoimunes/imunologia , Bacteroides/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Colite/imunologia , Citocinas/imunologia , Escherichia coli/imunologia , Feminino , Inflamação/imunologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 10: 3093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038631

RESUMO

B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.


Assuntos
Linfócitos B Reguladores/imunologia , Infecções por Bacteroides/imunologia , Bacteroides/fisiologia , Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Doenças Inflamatórias Intestinais/imunologia , Microbiota/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Antígenos de Bactérias/imunologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa