Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood Adv ; 7(16): 4278-4290, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36952551

RESUMO

Changes in surface glycan determinants, specifically sialic acid loss, determine platelet life span. The gradual loss of stored platelet quality is a complex process that fundamentally involves carbohydrate structures. Here, we applied lipophilic extraction and glycan release protocols to sequentially profile N- and O-linked glycans in freshly isolated and 7-day room temperature-stored platelet concentrates. Analytical methods including matrix assisted laser desorption/ionization time-of-flight mass spectrometry, tandem mass spectrometry, and liquid chromatography were used to obtain structural details of selected glycans and terminal epitopes. The fresh platelet repertoire of surface structures revealed diverse N-glycans, including high mannose structures, complex glycans with polylactosamine repeats, and glycans presenting blood group epitopes. The O-glycan repertoire largely comprised sialylated and fucosylated core-1 and core-2 structures. For both N- and O-linked glycans, we observed a loss in sialylated epitopes with a reciprocal increase in neutral structures as well as increased neuraminidase activity after platelet storage at room temperature. The data indicate that loss of sialylated glycans is associated with diminished platelet quality and untimely removal of platelets after storage.


Assuntos
Plaquetas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Plaquetas/química , Polissacarídeos , Epitopos
2.
J Pharm Sci ; 103(2): 400-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24302562

RESUMO

Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum half-life of receptor-Fc fusion proteins (RFPs), making their quality and consistency a concern during the production of fusion proteins. Here, we describe an analytical approach providing both quantitative profiling and in-depth mass spectrometry (MS)-based structural characterization of sialylated RFP N-glycans. Aiming to efficiently link routine comparability studies with detailed structural characterization, an integrated workflow was implemented employing fluorescence detection, online positive and negative ion tandem mass spectrometry (MS/MS), and offline static nanospray ionization-sequential mass spectrometry (NSI-MS(n)). For routine use, high-performance liquid chromatography profiling employs established fluorescence detection of 2-aminobenzoic acid derivatives (2AA) and hydrophilic interaction anion-exchange chromatography (HIAX) charge class separation. Further characterization of HIAX peak fractions is achieved by online (-) ion orbitrap MS/MS, offering the advantages of high mass accuracy and data-dependent MS/MS. As required, additional characterization uses porous graphitized carbon in the second chromatographic dimension to provide orthogonal (+) ion MS/MS spectra and buffer-free liquid chromatography peak eluants that are optimum for offline (+)/(-) NSI-MS(n) investigations to characterize low-abundance species and specific moieties including O-acetylation and sulfation.


Assuntos
Ácido N-Acetilneuramínico/química , Polissacarídeos/química , Acetilação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Indicadores e Reagentes , Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray , Sulfatos/química , Espectrometria de Massas em Tandem
3.
J Am Soc Mass Spectrom ; 25(3): 444-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24385394

RESUMO

Documenting mass spectral data is a fundamental aspect of accepted protocols. In this report, we contrast MS(n) sequential disassembly spectra obtained from natural and synthetic glycan epitopes. The epitopes considered are clusters found on conjugate termini of lipids and N- and O-glycans of proteins. The latter are most frequently pendant through a CID-labile HexNAc glycosidic linkage. The synthetic samples were supplied by collaborating colleagues and commercial sources and usually possessed a readily released reducing-end linker, a by-product of synthesis. All samples were comparably methylated, extracted, and MS(n) disassembled to compare their linkage and branching spectral details. Both sample types provide B-ion type fragments early in a disassembly pathway and their compositions are a suggestion of structure. Further steps of disassembly are necessary to confirm the details of linkage and branching. Included in this study were various Lewis and H antigens, 3- and 6-linked sialyl-lactosamine, NeuAc-2,8-NeuAc dimer, and Galα1,3Gal. Sample infusion provided high quality spectral data whereas disassembly to small fragments generates reproducible high signal/noise spectra for spectral matching. All samples were analyzed as sodium adducted positive ions. This study includes comparability statistics and evaluations on several mass spectrometers.


Assuntos
Epitopos/química , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Animais , Colo/química , Bases de Dados Factuais , Técnicas Histológicas , Humanos , Camundongos , Polissacarídeos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa