Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Vet Pathol ; 58(6): 1158-1171, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34269122

RESUMO

The development of mouse models that replicate the genetic and pathological features of human disease is important in preclinical research because these types of models enable the completion of meaningful pharmacokinetic, safety, and efficacy studies. Numerous relevant mouse models of human disease have been discovered in high-throughput screening programs, but there are important specific phenotypes revealed by histopathology that are not reliably detected by any other physiological or behavioral screening tests. As part of comprehensive phenotypic analyses of over 4000 knockout (KO) mice, histopathology identified 12 lines of KO mice with lesions indicative of an autosomal recessive myopathy. This report includes a brief summary of histological and other findings in these 12 lines. Notably, the inverted screen test detected muscle weakness in only 4 of these 12 lines (Scyl1, Plpp7, Chkb, and Asnsd1), all 4 of which have been previously recognized and published. In contrast, 6 of 8 KO lines showing negative or inconclusive findings on the inverted screen test (Plppr2, Pnpla7, Tenm1, Srpk3, Sidt2, Yif1b, Mrs2, and Pnpla2) had not been previously identified as having myopathies. These findings support the need to include histopathology in phenotype screening protocols in order to identify novel genetic myopathies that are not clinically evident or not detected by the inverted screen test.


Assuntos
Doenças Musculares , Proteínas de Transporte de Nucleotídeos , Doenças dos Roedores , Animais , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/veterinária , Camundongos , Camundongos Knockout , Músculo Esquelético , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/veterinária , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases
2.
Proc Natl Acad Sci U S A ; 114(7): 1708-1713, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28130548

RESUMO

The ß2-adrenergic receptor (ß2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known ß-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human ß2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the ß2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the ß2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the ß2AR. In cell-signaling studies, 15 inhibits cAMP production through the ß2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits ß-arrestin recruitment to the activated ß2AR. This study presents an allosteric small-molecule ligand for the ß2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Receptores Adrenérgicos beta 2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Animais , Sítios de Ligação/genética , Ligação Competitiva/efeitos dos fármacos , DNA/genética , Humanos , Ligantes , Estrutura Molecular , Mutação , Receptores Adrenérgicos beta 2/genética , Células Sf9 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Spodoptera
3.
Diabetes Metab Syndr Obes ; 14: 3753-3785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483672

RESUMO

PURPOSE: Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS: KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS: Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION: These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.

4.
Diabetes Metab Syndr Obes ; 13: 2641-2652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801815

RESUMO

PURPOSE: In humans, single nucleotide polymorphisms (SNPs) near the adjacent protein kinase D1 (PRKD1) and G2/M-phase-specific E3 ubiquitin protein ligase (G2E3) genes on chromosome 14 are associated with obesity. To date, no published evidence links inactivation of either gene to changes in body fat. These two genes are also adjacent on mouse chromosome 12. Because obesity genes are highly conserved between humans and mice, we analyzed body fat in adult G2e3 and Prkd1 knockout (KO) mice to determine whether inactivating either gene leads to obesity in mice and, by inference, probably in humans. METHODS: The G2e3 and Prkd1 KO lines were generated by gene trapping and by homologous recombination methodologies, respectively. Body fat was measured by DEXA in adult mice fed chow from weaning and by QMR in a separate cohort of mice fed high-fat diet (HFD) from weaning. Glucose homeostasis was evaluated with oral glucose tolerance tests (OGTTs) performed on adult mice fed HFD from weaning. RESULTS: Body fat was increased in multiple cohorts of G2e3 KO mice relative to their wild-type (WT) littermates. When data from all G2e3 KO (n=32) and WT (n=31) mice were compared, KO mice showed increases of 11% in body weight (P<0.01), 65% in body fat (P<0.001), 48% in % body fat (P<0.001), and an insignificant 3% decrease in lean body mass. G2e3 KO mice were also glucose intolerant during an OGTT (P<0.05). In contrast, Prkd1 KO and WT mice had comparable body fat levels and glucose tolerance. CONCLUSION: Significant obesity and glucose intolerance were observed in G2e3, but not Prkd1, KO mice. The conservation of obesity genes between mice and humans strongly suggests that the obesity-associated SNPs located near the human G2E3 and PRKD1 genes are linked to variants that decrease the amount of functional human G2E3.

5.
Bone Res ; 7: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622831

RESUMO

The disability, mortality and costs caused by non-vertebral osteoporotic fractures are enormous. Existing osteoporosis therapies are highly effective at reducing vertebral but not non-vertebral fractures. Cortical bone is a major determinant of non-vertebral bone strength. To identify novel osteoporosis drug targets, we phenotyped cortical bone of 3 366 viable mouse strains with global knockouts of druggable genes. Cortical bone thickness was substantially elevated in Notum -/- mice. NOTUM is a secreted WNT lipase and we observed high NOTUM expression in cortical bone and osteoblasts but not osteoclasts. Three orally active small molecules and a neutralizing antibody inhibiting NOTUM lipase activity were developed. They increased cortical bone thickness and strength at multiple skeletal sites in both gonadal intact and ovariectomized rodents by stimulating endocortical bone formation. Thus, inhibition of NOTUM activity is a potential novel anabolic therapy for strengthening cortical bone and preventing non-vertebral fractures.

6.
Artigo em Inglês | MEDLINE | ID: mdl-26082754

RESUMO

After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or ß (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side-effects.

7.
Bone Res ; 2: 14034, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26273529

RESUMO

Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.

8.
PLoS One ; 7(10): e47168, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071748

RESUMO

In vitro studies have identified LIMK2 as a key downstream effector of Rho GTPase-induced changes in cytoskeletal organization. LIMK2 is phosphorylated and activated by Rho associated coiled-coil kinases (ROCKs) in response to a variety of growth factors. The biochemical targets of LIMK2 belong to a family of actin binding proteins that are potent modulators of actin assembly and disassembly. Although numerous studies have suggested that LIMK2 regulates cell morphology and motility, evidence supportive of these functions in vivo has remained elusive. In this study, a knockout mouse was created that abolished LIMK2 biochemical activity resulting in a profound inhibition of epithelial sheet migration during eyelid development. In the absence of LIMK2, nascent eyelid keratinocytes differentiate and acquire a pre-migratory phenotype but the leading cells fail to nucleate filamentous actin and remain immobile causing an eyes open at birth (EOB) phenotype. The failed nucleation of actin was associated with significant reductions in phosphorylated cofilin, a major LIMK2 biochemical substrate and potent modulator of actin dynamics. These results demonstrate that LIMK2 activity is required for keratinocyte migration in the developing eyelid.


Assuntos
Movimento Celular/genética , Pálpebras/citologia , Queratinócitos/citologia , Quinases Lim/fisiologia , Actinas/metabolismo , Animais , Pálpebras/embriologia , Pálpebras/patologia , Genótipo , Quinases Lim/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação
9.
Mol Cell Biol ; 31(1): 63-80, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974805

RESUMO

An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function.


Assuntos
Glomérulos Renais/anatomia & histologia , Glomérulos Renais/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Glomerulonefrite por IGA/etiologia , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Glomérulos Renais/enzimologia , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Podócitos/enzimologia , Podócitos/patologia , Podócitos/fisiologia , Insuficiência Renal/etiologia , Insuficiência Renal/patologia , Insuficiência Renal/fisiopatologia , Quimeras de Transplante
10.
Nat Biotechnol ; 28(7): 749-55, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562862

RESUMO

Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.


Assuntos
Proteínas de Membrana/genética , Animais , Camundongos , Camundongos Knockout
11.
PLoS One ; 4(1): e4112, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19119317

RESUMO

BACKGROUND: S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. METHODOLOGY: In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. PRINCIPAL FINDINGS: Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL(-/-)) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PL(H/-)) or two alleles (S1PL(H/H)) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL(-/-) mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. SIGNIFICANCE: These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs.


Assuntos
Aldeído Liases/antagonistas & inibidores , Aldeído Liases/metabolismo , Sistema Imunitário/fisiologia , Aldeído Liases/genética , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Hematopoese/fisiologia , Humanos , Linfopenia/imunologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Baço/citologia , Baço/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia
12.
Genome Res ; 18(10): 1670-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18799693

RESUMO

We report the construction and analysis of a mouse gene trap mutant resource created in the C57BL/6N genetic background containing more than 350,000 sequence-tagged embryonic stem (ES) cell clones. We also demonstrate the ability of these ES cell clones to contribute to the germline and produce knockout mice. Each mutant clone is identified by a genomic sequence tag representing the exact insertion location, allowing accurate prediction of mutagenicity and enabling direct genotyping of mutant alleles. Mutations have been identified in more than 10,000 genes and show a bias toward the first intron. The trapped ES cell lines, which can be requested from the Texas A&M Institute for Genomic Medicine, are readily available to the scientific community.


Assuntos
Células-Tronco Embrionárias/metabolismo , Mutagênese Insercional , Animais , Blastocisto/metabolismo , Linhagem Celular , Quimera , Células Clonais , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Íntrons , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs
13.
Obesity (Silver Spring) ; 16(10): 2362-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18719666

RESUMO

We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.


Assuntos
Absorciometria de Fóton , Tecido Adiposo/fisiopatologia , Adiposidade/genética , Obesidade/fisiopatologia , Magreza/fisiopatologia , Tecido Adiposo/diagnóstico por imagem , Animais , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Feminino , Genótipo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Obesidade/diagnóstico por imagem , Obesidade/genética , Fenótipo , Reprodutibilidade dos Testes , Magreza/diagnóstico por imagem , Magreza/genética
14.
Mamm Genome ; 18(10): 709-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17926094

RESUMO

AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .


Assuntos
Leucemia Linfoide/genética , Linfoma/genética , Reação em Cadeia da Polimerase/métodos , Retroviridae/genética , Animais , Sequência de Bases , Transformação Celular Neoplásica , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica , Genes Supressores de Tumor , Técnicas Genéticas , Leucemia Linfoide/virologia , Linfoma/virologia , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/metabolismo , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa