Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(34): 11831-11837, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35969432

RESUMO

Measurement of protein-facilitated copper flux across biological membranes is a considerable challenge. Here, we demonstrate a straightforward microfluidic-derived approach for visualization and measurement of membranous Cu flux. Giant unilamellar vesicles, reconstituted with the membrane protein of interest, are prepared, surface-immobilized, and assessed using a novel quencher-sensor reporter system for detection of copper. With the aid of a syringe pump, the external buffer is exchanged, enabling consistent and precise exchange of solutes, without causing vesicle rupture or uneven local metal concentrations brought about by rapid mixing. This approach bypasses common issues encountered when studying heavy metal-ion flux, thereby providing a new platform for in vitro studies of metal homeostasis aspects that are critical for all cells, health, and disease.


Assuntos
Cobre , Microfluídica , Lipídeos , Membranas , Proteínas , Lipossomas Unilamelares
2.
Mol Biol Evol ; 37(11): 3083-3093, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521018

RESUMO

A challenging question in evolutionary theory is the origin of cell division and plausible molecular mechanisms involved. Here, we made the surprising observation that complexes formed by short alpha-helical peptides and oleic acid can create multiple membrane-enclosed spaces from a single lipid vesicle. The findings suggest that such complexes may contain the molecular information necessary to initiate and sustain this process. Based on these observations, we propose a new molecular model to understand protocell division.


Assuntos
Células Artificiais/química , Divisão Celular , Lactalbumina/química , Membranas/química , Ácido Oleico/química , Vesículas Citoplasmáticas/química , Peptídeos/química
3.
J Membr Biol ; 250(6): 629-639, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28914342

RESUMO

Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.


Assuntos
Aquagliceroporinas/química , Água/química , Humanos , Espectroscopia de Ressonância Magnética
5.
Phys Rev Lett ; 116(23): 237601, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341258

RESUMO

One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

6.
Langmuir ; 31(49): 13275-89, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26457405

RESUMO

This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response functions that incorporate spatial correlations. The continuum theory is compared with molecular dynamics simulation data for both relaxation processes and fluid flows, showing excellent agreement on the nanometer length scale. We also present practical tools to estimate when the extended theory should be used. It is shown that in the wall-fluid region the fluid molecules align with the wall, and in this region the isotropic model may fail and a full anisotropic description is necessary.

7.
J Chem Phys ; 142(24): 244501, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26133435

RESUMO

The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates are immersed in a solvent of saturated hydrocarbon molecules. At a fixed temperature, the shear-shinning behavior is related not only to the inter- and intramolecular alignments of the solvent molecules but also to the decrease of the average size of the nanoaggregates at high shear rates. The variation of the viscosity with temperature at different shear rates is also related to the size and relative composition of the nanoaggregates. The slight anisotropy of the whole sample due to the nanoaggregates is considered and quantified. Finally, the position of bitumen mixtures in the broad literature of complex systems such as colloidal suspensions, polymer solutions, and associating polymer networks is discussed.

8.
J Chem Phys ; 141(14): 144308, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318723

RESUMO

Asphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen. Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen, eventually leading to road deterioration. This paper focuses on understanding the mechanisms behind nanoaggregate size and stability. We used molecular dynamics simulations to quantify the probability of having a nanoaggregate of a given size in the stationary regime. To model this complicated behavior, we chose first to consider the simple case where only asphaltene molecules are counted in a nanoaggregate. We used a master equation approach and a related statistical mechanics model. The linear asphaltene nanoaggregates behave as a rigid linear chain. The most complicated case where all aromatic molecules are counted in a nanoaggregate is then discussed. The linear aggregates where all aromatic molecules are counted seem to behave as a flexible linear chain.

9.
J Mol Biol ; 436(16): 168665, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878854

RESUMO

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.

10.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951531

RESUMO

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Assuntos
Enzima de Conversão de Angiotensina 2 , Microscopia Crioeletrônica , Prolina , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Prolina/metabolismo , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Modelos Moleculares
11.
J Am Chem Soc ; 135(46): 17294-7, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24180248

RESUMO

We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily harvested for individual study. By controlling the lipid composition we are able to direct the aquaporin into specific immiscible liquid domains in giant vesicles. The oligomeric α-helical protein cosegregates with the cholesterol-poor domains in phase separating ternary mixtures.


Assuntos
Lipídeos/química , Proteínas de Membrana/química , Tamanho da Partícula , Propriedades de Superfície
12.
J Chem Phys ; 139(12): 124506, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24089785

RESUMO

We study chemical aging in "Cooee bitumen" using molecular dynamic simulations. This model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins → 1 asphaltene." Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

13.
Expert Opin Drug Discov ; 18(5): 505-513, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062930

RESUMO

INTRODUCTION: The rational development of new therapeutics requires a thorough understanding of how aberrant signalling affects cellular homeostasis and causes human disease. Chemical probes are tool compounds with well-defined mechanism-of-action enabling modulation of, for example, domain-specific protein properties in a temporal manner, thereby complementing other target validation methods such as genetic gain- and loss-of-function approaches. AREAS COVERED: In this review, the authors summarize recent advances in chemical probe development for emerging target classes such as solute carriers and ubiquitin-related targets and highlight open resources to inform and facilitate chemical probe discovery as well as tool compound selection for target validation and phenotypic screening. EXPERT OPINION: Chemical probes are powerful tools for drug discovery that have led to fundamental insights into biological processes and have paved the way for the development of first-in-class drugs. Open resources can inform on various aspects of chemical probe development and provide access to data and recommendations on use of chemical probes to catalyse collaborative science and help accelerate drug target identification and validation.


Assuntos
Química Farmacêutica , Descoberta de Drogas
14.
Biochim Biophys Acta ; 1808(10): 2600-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21683056

RESUMO

This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.


Assuntos
Aquaporinas/química , Escherichia coli/química , Dodecilsulfato de Sódio/química , Spinacia oleracea/química , Dicroísmo Circular , Corantes Fluorescentes , Espectrometria de Fluorescência
15.
Biochim Biophys Acta Biomembr ; 1864(1): 183795, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627746

RESUMO

Aquaporins play a crucial role in water homeostasis in the human body, and recently the physiological importance of aquaporins as glycerol channels have been demonstrated. The aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) represent key glycerol channels, enabling glycerol flux across the membranes of cells. Adipocytes are the major source of glycerol and during lipolysis, glycerol is released to be metabolized by other tissues through a well-orchestrated process. Here we show that both AQP3 and AQP7 bind to the lipid droplet protein perilipin 1 (PLIN1), suggesting that PLIN1 is involved in the coordination of the subcellular translocation of aquaglyceroporins in human adipocytes. Moreover, in addition to aquaglyceroporins, we discovered by transcriptome sequencing that AQP1 is expressed in human primary adipocytes. AQP1 is mainly a water channel and thus is thought to be involved in the response to hyper-osmotic stress by efflux of water during hyperglycemia. Thus, this data suggests a contribution of both orthodox aquaporin and aquaglyceroporin in human adipocytes to maintain the homeostasis of glycerol and water during fasting and feeding.


Assuntos
Aquaporina 1/genética , Aquaporina 3/genética , Aquaporinas/genética , Hiperglicemia/genética , Perilipina-1/genética , Adipócitos/metabolismo , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Regulação da Expressão Gênica/genética , Glicerol/metabolismo , Homeostase/genética , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Transcriptoma/genética , Água/metabolismo
16.
Biochem Biophys Res Commun ; 406(1): 96-100, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295545

RESUMO

Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR)=50 more than 10(5) FomA proteins could be incorporated in a bilayer array with a total membrane area of 2mm(2) within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bicamadas Lipídicas/metabolismo , Fusão de Membrana , Análise Serial de Proteínas/métodos , Canais de Ânion Dependentes de Voltagem/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Bicamadas Lipídicas/química , Proteolipídeos/química , Proteolipídeos/metabolismo , Canais de Ânion Dependentes de Voltagem/química
17.
Chembiochem ; 12(18): 2856-62, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22069223

RESUMO

This paper describes a method to create giant protein vesicles (GPVs) of ≥10 µm by solvent-driven fusion of large vesicles (0.1-0.2 µm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein-reconstituted large unilamellar vesicles (LUVs) with a lipid-containing solvent phase. We made GPVs by using n-decane and squalene as solvents, and applied generalized polarization (GP) imaging to monitor the polarity around the protein transmembrane region of aquaporins labeled with the polarity-sensitive probe Badan. Specifically, we created GPVs of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform.


Assuntos
Lipídeos/química , Proteínas/química , Solventes
18.
Food Res Int ; 137: 109539, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233167

RESUMO

Saturated solutions of calcium l-lactate in water or in deuterium oxide continuously dissolve calcium l-lactate by addition of solid sodium d-gluconate and become strongly supersaturated in calcium d-gluconate due to no or slow precipitation. The quantification of total dissolved calcium allied with the calcium complexes equilibrium constants allowed an ion speciation, which shows an initial non-thermal and spontaneous supersaturation of more than a factor of 50 at 25 °C only slowly decreasing after initiation of precipitation of calcium d-gluconate after a lag phase of several hours. A mathematical model is proposed, based on numerical solution of coupled differential equations of dynamics of l-lactate and d-gluconate exchange during the lag phase for precipitation and during precipitation. A slow exchange of l-lactate coordinated to calcium with d-gluconate is indicated with a time constant of 0.20 h-1 in water and of 0.15 h-1 in deuterium oxide and a kinetic deuterium/hydrogen isotope effect of 1.25. Such spontaneous non-thermal supersaturation and slow ligand exchange with a pseudo first order equilibration process with a half-life of 3.5 h in water for calcium hydroxycarboxylates can help to understand the higher calcium bioavailability from calcium hydroxycarboxylates compared to simple salts.


Assuntos
Cálcio , Ácido Láctico , Gluconatos , Solubilidade , Água
19.
Anal Bioanal Chem ; 395(3): 719-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19672582

RESUMO

To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO(2) laser micro-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 microm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.


Assuntos
Biomimética/instrumentação , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Membranas Artificiais , Peptídeos Cíclicos/química , Bacillus/química , Proteínas da Membrana Bacteriana Externa/química , Toxinas Bacterianas/química , Técnicas Eletroquímicas , Desenho de Equipamento , Gramicidina/química , Proteínas Hemolisinas/química , Staphylococcus aureus/química , Valinomicina/química
20.
Biochem J ; 410(3): 463-72, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17953517

RESUMO

In the present study, we microinjected fluorescently labelled liver bovine ACBP (acyl-CoA-binding protein) [FACI-50 (fluorescent acyl-CoA indicator-50)] into HeLa and BMGE (bovine mammary gland epithelial) cell lines to characterize the localization and dynamics of ACBP in living cells. Results showed that ACBP targeted to the ER (endoplasmic reticulum) and Golgi in a ligand-binding-dependent manner. A variant Y28F/K32A-FACI-50, which is unable to bind acyl-CoA, did no longer show association with the ER and became segregated from the Golgi, as analysed by intensity correlation calculations. Depletion of fatty acids from cells by addition of FAFBSA (fatty-acid-free BSA) significantly decreased FACI-50 association with the Golgi, whereas fatty acid overloading increased Golgi association, strongly supporting that ACBP associates with the Golgi in a ligand-dependent manner. FRAP (fluorescence recovery after photobleaching) showed that the fatty-acid-induced targeting of FACI-50 to the Golgi resulted in a 5-fold reduction in FACI-50 mobility. We suggest that ACBP is targeted to the ER and Golgi in a ligand-binding-dependent manner in living cells and propose that ACBP may be involved in vesicular trafficking.


Assuntos
Inibidor da Ligação a Diazepam/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Animais , Sequência de Bases , Bovinos , Linhagem Celular , Primers do DNA , Corantes Fluorescentes , Células HeLa , Humanos , Ligantes , Microscopia Confocal , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa