Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113767

RESUMO

Herein, we report a novel therapy for prostate cancer based on systemically delivered magnetic hyperthermia. Conventional magnetic hyperthermia is a form of thermal therapy where magnetic nanoparticles delivered to cancer sites via intratumoral administration produce heat in the presence of an alternating magnetic field (AMF). To employ this therapy for prostate cancer tumors that are challenging to inject intratumorally, we designed novel nanoclusters with enhanced heating efficiency that reach prostate cancer tumors after systemic administration and generate desirable intratumoral temperatures upon exposure to an AMF. Our nanoclusters are based on hydrophobic iron oxide nanoparticles doped with zinc and manganese. To overcome the challenges associated with the poor water solubility of the synthesized nanoparticles, the solvent evaporation approach was employed to encapsulate and cluster them within the hydrophobic core of PEG-PCL (methoxy poly(ethylene glycol)-b-poly(ε-caprolactone))-based polymeric nanoparticles. Animal studies demonstrated that, following intravenous injection into mice bearing prostate cancer grafts, the nanoclusters efficiently accumulated in cancer tumors within several hours and increased the intratumoral temperature above 42 °C upon exposure to an AMF. Finally, the systemically delivered magnetic hyperthermia significantly inhibited prostate cancer growth and did not exhibit any signs of toxicity.

2.
ACS Nano ; 13(6): 6383-6395, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31082199

RESUMO

Despite its promising therapeutic potential, nanoparticle-mediated magnetic hyperthermia is currently limited to the treatment of localized and relatively accessible cancer tumors because the required therapeutic temperatures above 40 °C can only be achieved by direct intratumoral injection of conventional iron oxide nanoparticles. To realize the true potential of magnetic hyperthermia for cancer treatment, there is an unmet need for nanoparticles with high heating capacity that can efficiently accumulate at tumor sites following systemic administration and generate desirable intratumoral temperatures upon exposure to an alternating magnetic field (AMF). Although there have been many attempts to develop the desired nanoparticles, reported animal studies reveal the challenges associated with reaching therapeutically relevant intratumoral temperatures following systemic administration at clinically relevant doses. Therefore, we developed efficient magnetic nanoclusters with enhanced heating efficiency for systemically delivered magnetic hyperthermia that are composed of cobalt- and manganese-doped, hexagon-shaped iron oxide nanoparticles (CoMn-IONP) encapsulated in biocompatible PEG-PCL (poly(ethylene glycol)- b-poly(ε-caprolactone))-based nanocarriers. Animal studies validated that the developed nanoclusters are nontoxic, efficiently accumulate in ovarian cancer tumors following a single intravenous injection, and elevate intratumoral temperature up to 44 °C upon exposure to safe and tolerable AMF. Moreover, the obtained results confirmed the efficiency of the nanoclusters to generate the required intratumoral temperature after repeated injections and demonstrated that nanocluster-mediated magnetic hyperthermia significantly inhibits cancer growth. In summary, this nanoplatform is a milestone in the development of systemically delivered magnetic hyperthermia for the treatment of cancer tumors that are difficult to access for intratumoral injection.


Assuntos
Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanoconjugados/química , Animais , Linhagem Celular Tumoral , Feminino , Compostos Férricos/química , Humanos , Lactonas/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Neoplasias Experimentais/terapia , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa