Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Circ Res ; 130(12): 1869-1887, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679358

RESUMO

Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Colesterol , Inflamação , Modelos Animais
2.
Arterioscler Thromb Vasc Biol ; 43(8): 1510-1523, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259863

RESUMO

BACKGROUND: Inflammation triggered by the deposition of LDL (low-density lipoprotein) in the arterial wall leads to the development of atherosclerosis. Regulatory T (Treg) cells inhibit vascular inflammation through the induction of immune tolerance toward LDL-related antigens. However, tolerogenic mechanisms that promote the generation of LDL-specific Treg cells in vivo remain unclear. METHODS: We identified LDL-specific T cells by activation-induced marker expression and analyzed expression profiles and suppressive functions of TCR (T-cell antigen receptor)-transgenic T cells upon repetitive transfer into antigen-transgenic mice via flow cytometry. RESULTS: We investigated the naturally occurring Treg-cell response against human LDL in standard chow diet-fed mice that are transgenic for human ApoB100 (apolipoprotein B100). We found that IL (interleukin)-10 expression in LDL-specific T cells from spleen increases with age, albeit LDL-specific populations do not enlarge in older mice. To investigate the generation of IL-10-producing LDL-specific T cells, we transferred naive CD4+ T cells recognizing human ApoB100 from TCR-transgenic mice into human ApoB100-transgenic mice. Adoptive transfer of human ApoB100-specific T cells induced immune tolerance in recipient mice and effectively inhibited activation of subsequently transferred naive T cells of the same specificity in vivo. Moreover, repetitive transfers increased the population of Treg type 1 cells that suppress ApoB100-specific responses via IL-10. In a translational approach, LDL-specific Treg type 1 cells from blood of healthy donors suppressed the activation of monocytic THP-1 cells in an IL-10-dependent manner. CONCLUSIONS: We show that repetitive transfer of naive ApoB100-specific T cells and recurrent LDL-specific T-cell stimulation induces Treg type 1 cell-mediated immune tolerance against LDL in vivo. Our results provide insight into the generation of autoantigen-specific anti-inflammatory T cells under tolerogenic conditions.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Interleucina-10/genética , Camundongos Transgênicos , Tolerância Imunológica , Receptores de Antígenos de Linfócitos T/metabolismo , Inflamação/metabolismo
3.
Nat Immunol ; 12(3): 204-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21321594

RESUMO

Cardiovascular disease, a leading cause of mortality worldwide, is caused mainly by atherosclerosis, a chronic inflammatory disease of blood vessels. Lesions of atherosclerosis contain macrophages, T cells and other cells of the immune response, together with cholesterol that infiltrates from the blood. Targeted deletion of genes encoding costimulatory factors and proinflammatory cytokines results in less disease in mouse models, whereas interference with regulatory immunity accelerates it. Innate as well as adaptive immune responses have been identified in atherosclerosis, with components of cholesterol-carrying low-density lipoprotein triggering inflammation, T cell activation and antibody production during the course of disease. Studies are now under way to develop new therapies based on these concepts of the involvement of the immune system in atherosclerosis.


Assuntos
Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Sistema Imunitário , Animais , Aterosclerose/genética , Humanos , Lipoproteínas LDL/imunologia , Camundongos
4.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35321563

RESUMO

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Assuntos
Aterosclerose , Placa Aterosclerótica , Proteínas Repressoras/metabolismo , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Aterosclerose/metabolismo , Transdiferenciação Celular , Humanos , Lipídeos , Camundongos , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética , Ultrassonografia
5.
Immunity ; 38(6): 1092-104, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23809160

RESUMO

According to the traditional view, atherosclerosis results from a passive buildup of cholesterol in the artery wall. Yet, burgeoning evidence implicates inflammation and immune effector mechanisms in the pathogenesis of this disease. Both innate and adaptive immunity operate during atherogenesis and link many traditional risk factors to altered arterial functions. Inflammatory pathways have become targets in the quest for novel preventive and therapeutic strategies against cardiovascular disease, a growing contributor to morbidity and mortality worldwide. Here we review current experimental and clinical knowledge of the pathogenesis of atherosclerosis through an immunological lens and how host defense mechanisms essential for survival of the species actually contribute to this chronic disease but also present new opportunities for its mitigation.


Assuntos
Artérias/metabolismo , Aterosclerose/imunologia , Colesterol/metabolismo , Imunidade Adaptativa , Animais , Aterosclerose/terapia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Inflamação/terapia , Camundongos , Terapia de Alvo Molecular
6.
Circ Res ; 126(9): 1281-1296, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32324498

RESUMO

Adaptive as well as innate immune responses contribute to the development of atherosclerosis. Studies performed in experimental animals have revealed that some of these immune responses are protective while others contribute to the progression of disease. These observations suggest that it may be possible to develop novel therapies for cardiovascular disease by selectively modulating such atheroprotective and proatherogenic immunity. Recent advances in cancer treatment using immune check inhibitors and CAR (chimeric antigen receptor) T-cell therapy serve as excellent examples of the possibilities of targeting the immune system to combat disease. LDL (low-density lipoprotein) that has accumulated in the artery wall is a key autoantigen in atherosclerosis, and activation of antigen-specific T helper 1-type T cells is thought to fuel plaque inflammation. Studies aiming to prove this concept by immunizing experimental animals with oxidized LDL particles unexpectedly resulted in activation of atheroprotective immunity involving regulatory T cells. This prompted several research groups to try to develop vaccines against atherosclerosis. In this review, we will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk. We will also summarize ongoing clinical studies and discuss the challenges associated with developing an effective and safe atherosclerosis vaccine.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticorpos/uso terapêutico , Aterosclerose/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Vacinas/uso terapêutico , Animais , Anticorpos/efeitos adversos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas/efeitos adversos
7.
Circ Res ; 126(5): 571-585, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893970

RESUMO

RATIONALE: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. OBJECTIVE: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. METHODS AND RESULTS: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. CONCLUSIONS: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling. Visual Overview: An online visual overview is available for this article.


Assuntos
Miócitos de Músculo Liso/metabolismo , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Remodelação Vascular , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/fisiologia , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertases/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/metabolismo , Transcriptoma
8.
Circulation ; 139(21): 2466-2482, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894016

RESUMO

BACKGROUND: Atherosclerosis progression is modulated by interactions with the adaptive immune system. Humoral immunity can help protect against atherosclerosis formation; however, the existence, origin, and function of putative atherogenic antibodies are controversial. How such atherosclerosis-promoting antibodies could affect the specific composition and stability of plaques, as well as the vasculature generally, remains unknown. METHODS: We addressed the overall contribution of antibodies to atherosclerosis plaque formation, composition, and stability in vivo (1) with mice that displayed a general loss of antibodies, (2) with mice that had selectively ablated germinal center-derived IgG production, or (3) through interruption of T-B-cell interactions and further studied the effects of antibody deficiency on the aorta by transcriptomics. RESULTS: Here, we demonstrate that atherosclerosis-prone mice with attenuated plasma cell function manifest reduced plaque burden, indicating that antibodies promote atherosclerotic lesion size. However, the composition of the plaque was altered in antibody-deficient mice, with an increase in lipid content and decreases in smooth muscle cells and macrophages, resulting in an experimentally validated vulnerable plaque phenotype. Furthermore, IgG antibodies enhanced smooth muscle cell proliferation in vitro in an Fc receptor-dependent manner, and antibody-deficient mice had decreased neointimal hyperplasia formation in vivo. These IgG antibodies were shown to be derived from germinal centers, and mice genetically deficient for germinal center formation had strongly reduced atherosclerosis plaque formation. mRNA sequencing of aortas revealed that antibodies are required for the sufficient expression of multiple signal-induced and growth-promoting transcription factors and that aortas undergo large-scale metabolic reprograming in their absence. Using an elastase model, we demonstrated that absence of IgG results in an increased severity of aneurysm formation. CONCLUSIONS: We propose that germinal center-derived IgG antibodies promote the size and stability of atherosclerosis plaques, through promoting arterial smooth muscle cell proliferation and maintaining the molecular identity of the aorta. These results could have implications for therapies that target B cells or B-T-cell interactions because the loss of humoral immunity leads to a smaller but less stable plaque phenotype.


Assuntos
Aorta/imunologia , Doenças da Aorta/imunologia , Aterosclerose/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Placa Aterosclerótica , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Centro Germinativo/metabolismo , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fator 1 de Ligação ao Domínio I Regulador Positivo/deficiência , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Ruptura Espontânea , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
FASEB J ; 33(2): 1536-1539, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30703872

RESUMO

Although a high marine food intake is considered cardioprotective, randomized trials of ω-3 fatty acids initially generated conflicting results in terms of the role of ω-3 supplementation in cardiovascular prevention. This work demonstrates the results of the 3 most recent clinical trials with ω-3 fatty acids are put into the context of possible mechanisms mediating their beneficial cardiovascular effects. In particular, the randomized Reduction of Cardiovascular Events with EPA Intervention Trial (REDUCE-IT) showed that icosapent ethyl, which is the ethyl ester form of the ω-3 fatty acid eicosapentaenoic acid (EPA), induced a significant reduction of cardiovascular events. Importantly, EPA serves as a substrate for the formation of the specialized proresolving mediator resolvin E1 (RvE1), which stimulates the resolution of inflammation. RvE1 reduces atherosclerosis and intimal hyperplasia by means of its specific receptor ERV1/ChemR23. The decreased levels of proinflammatory and proatherosclerotic leukotrienes by ω-3 fatty acids may further contribute to a beneficial inflammatory balance. Consequently, the Rv/leukotriene ratio is emerging as a marker of nonresolving vascular inflammation. Recent experimental studies have shown that anti-inflammatory and proresolving effects of lipid mediators derived from ω-3 fatty acids inhibit atherosclerosis independently of cholesterol and triglyceride levels. The results of the 3 most recent clinical trials of ω-3 fatty acid supplementation indicate an importance of the type and dose of ω-3 supplementation and highlight the need for risk stratification in the patient selection for ω-3 supplementation for either primary or secondary prevention of cardiovascular disease.-Bäck, M., Hansson, G. K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos Ômega-3/administração & dosagem , Inflamação/prevenção & controle , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
10.
Circ Res ; 122(10): 1385-1394, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618596

RESUMO

RATIONALE: Regulatory T (Treg) cells suppress immune responses and have been shown to attenuate atherosclerosis. The Treg cell lineage-specification factor FOXP3 (forkhead box P3) is essential for Treg cells' ability to uphold immunologic tolerance. In humans, FOXP3 exists in several different isoforms, however, their specific role is poorly understood. OBJECTIVE: To define the regulation and functions of the 2 major FOXP3 isoforms, FOXP3fl and FOXP3Δ2, as well as to establish whether their expression is associated with the ischemic atherosclerotic disease. METHODS AND RESULTS: Human primary T cells were transduced with lentiviruses encoding distinct FOXP3 isoforms. The phenotype and function of these cells were analyzed by flow cytometry, in vitro suppression assays and RNA-sequencing. We also assessed the effect of activation on Treg cells isolated from healthy volunteers. Treg cell activation resulted in increased FOXP3 expression that predominantly was made up of FOXP3Δ2. FOXP3Δ2 induced specific transcription of GARP (glycoprotein A repetitions predominant), which functions by tethering the immunosuppressive cytokine TGF (transforming growth factor)-ß to the cell membrane of activated Treg cells. Real-time polymerase chain reaction was used to determine the impact of alternative splicing of FOXP3 in relation with atherosclerotic plaque stability in a cohort of >150 patients that underwent carotid endarterectomy. Plaque instability was associated with a lower FOXP3Δ2 transcript usage, when comparing plaques from patients without symptoms and patients with the occurrence of recent (<1 month) vascular symptoms including minor stroke, transient ischemic attack, or amaurosis fugax. No difference was detected in total levels of FOXP3 mRNA between these 2 groups. CONCLUSIONS: These results suggest that activated Treg cells suppress the atherosclerotic disease process and that FOXP3Δ2 controls a transcriptional program that acts protectively in human atherosclerotic plaques.


Assuntos
Processamento Alternativo , Fatores de Transcrição Forkhead/genética , Placa Aterosclerótica/metabolismo , Linfócitos T Reguladores/metabolismo , Amaurose Fugaz/metabolismo , Amaurose Fugaz/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica , Vetores Genéticos/farmacologia , Humanos , Células Jurkat , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Linfócitos T Reguladores/patologia , Transcrição Gênica
12.
Eur Heart J ; 40(30): 2495-2503, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081038

RESUMO

AIMS: Radiotherapy-induced cardiovascular disease is an emerging problem in a growing population of cancer survivors where traditional treatments, such as anti-platelet and lipid-lowering drugs, have limited benefits. The aim of the study was to investigate vascular inflammatory patterns in human cancer survivors, replicate the findings in an animal model, and evaluate whether interleukin-1 (IL-1) inhibition could be a potential treatment. METHODS AND RESULTS: Irradiated human arterial biopsies were collected during microvascular autologous free tissue transfer for cancer reconstruction and compared with non-irradiated arteries from the same patient. A mouse model was used to study the effects of the IL-1 receptor antagonist, anakinra, on localized radiation-induced vascular inflammation. We observed significant induction of genes associated with inflammasome biology in whole transcriptome analysis of irradiated arteries, a finding supported by elevated protein levels in irradiated arteries of both, pro-caspase and caspase-1. mRNA levels of inflammasome associated chemokines CCL2, CCL5 together with the adhesion molecule VCAM1, were elevated in human irradiated arteries as was the number of infiltrating macrophages. A similar pattern was reproduced in Apoe-/- mouse 10 weeks after localized chest irradiation with 14 Gy. Treatment with anakinra in irradiated mice significantly reduced Ccl2 and Ccl5 mRNA levels and expression of I-Ab. CONCLUSION: Anakinra, administered directly after radiation exposure for 2 weeks, ameliorated radiation induced sustained expression of inflammatory mediators in mice. Further studies are needed to evaluate IL-1 blockade as a treatment of radiotherapy-induced vascular disease in a clinical setting.


Assuntos
Arterite/prevenção & controle , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1/antagonistas & inibidores , Lesões Experimentais por Radiação/prevenção & controle , Radioterapia/efeitos adversos , Animais , Arterite/etiologia , Quimiocina CCL2/metabolismo , Feminino , Humanos , Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/radioterapia , Lesões Experimentais por Radiação/metabolismo
13.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30452556

RESUMO

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Assuntos
Aterosclerose/etiologia , Linfócitos T CD8-Positivos/imunologia , Linfoma de Células B/complicações , Macrófagos/patologia , Proteína Oncogênica v-cbl/metabolismo , Placa Aterosclerótica/etiologia , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
14.
Circulation ; 138(22): 2513-2526, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29997115

RESUMO

BACKGROUND: Atherosclerotic cardiovascular disease is a chronic inflammatory process initiated when cholesterol-carrying low-density lipoprotein (LDL) is retained in the arterial wall. CD4+ T cells, some of which recognize peptide components of LDL as antigen, are recruited to the forming lesion, resulting in T-cell activation. Although these T cells are thought to be proatherogenic, LDL immunization reduces disease in experimental animals. These seemingly contradictory findings have hampered the development of immune-based cardiovascular therapy. The present study was designed to clarify how activation of LDL-reactive T cells impacts on metabolism and vascular pathobiology. METHODS: We have developed a T-cell receptor-transgenic mouse model to characterize the effects of immune reactions against LDL. Through adoptive cell transfers and cross-breeding to hypercholesterolemic mice expressing the antigenic human LDL protein apolipoprotein B-100, we evaluate the effects on atherosclerosis. RESULTS: A subpopulation of LDL-reactive T cells survived clonal selection in the thymus, developed into T follicular helper cells in lymphoid tissues on antigen recognition, and promoted B-cell activation. This led to production of anti-LDL immunoglobulin G antibodies that enhanced LDL clearance through immune complex formation. Furthermore, the cellular immune response to LDL was associated with increased cholesterol excretion in feces and with reduced vascular inflammation. CONCLUSIONS: These data show that anti-LDL immunoreactivity evokes 3 atheroprotective mechanisms: antibody-dependent LDL clearance, increased cholesterol excretion, and reduced vascular inflammation.


Assuntos
Aterosclerose/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Colesterol/sangue , Lipoproteínas LDL/imunologia , Animais , Anticorpos/imunologia , Apolipoproteína B-100/sangue , Apolipoproteínas E , Aterosclerose/patologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Lipoproteínas LDL/administração & dosagem , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
15.
Circulation ; 138(16): 1693-1705, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29739755

RESUMO

BACKGROUND: In addition to enhanced proinflammatory signaling, impaired resolution of vascular inflammation plays a key role in atherosclerosis. Proresolving lipid mediators formed through the 12/15 lipoxygenase pathways exert protective effects against murine atherosclerosis. n-3 Polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), serve as the substrate for the formation of lipid mediators, which transduce potent anti-inflammatory and proresolving actions through their cognate G-protein-coupled receptors. The aim of this study was to identify signaling pathways associated with EPA supplementation and lipid mediator formation that mediate atherosclerotic disease progression. METHODS: Lipidomic plasma analysis were performed after EPA supplementation in Apoe-/- mice. Erv1/Chemr23-/- xApoe-/- mice were generated for the evaluation of atherosclerosis, phagocytosis, and oxidized low-density lipoprotein uptake. Histological and mRNA analyses were done on human atherosclerotic lesions. RESULTS: Here, we show that EPA supplementation significantly attenuated atherosclerotic lesion growth induced by Western diet in Apoe-/- mice and was associated with local cardiovascular n-3 enrichment and altered lipoprotein metabolism. Our systematic plasma lipidomic analysis identified the resolvin E1 precursor 18-monohydroxy EPA as a central molecule formed during EPA supplementation. Targeted deletion of the resolvin E1 receptor Erv1/Chemr23 in 2 independent hyperlipidemic murine models was associated with proatherogenic signaling in macrophages, increased oxidized low-density lipoprotein uptake, reduced phagocytosis, and increased atherosclerotic plaque size and necrotic core formation. We also demonstrate that in macrophages the resolvin E1-mediated effects in oxidized low-density lipoprotein uptake and phagocytosis were dependent on Erv1/Chemr23. When analyzing human atherosclerotic specimens, we identified ERV1/ChemR23 expression in a population of macrophages located in the proximity of the necrotic core and demonstrated augmented ERV1/ChemR23 mRNA levels in plaques derived from statin users. CONCLUSIONS: This study identifies 18-monohydroxy EPA as a major plasma marker after EPA supplementation and demonstrates that the ERV1/ChemR23 receptor for its downstream mediator resolvin E1 transduces protective effects in atherosclerosis. ERV1/ChemR23 signaling may represent a previously unrecognized therapeutic pathway to reduce atherosclerotic cardiovascular disease.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Ácido Eicosapentaenoico/farmacologia , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Placa Aterosclerótica , Receptores Acoplados a Proteínas G/agonistas , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Redutases do Citocromo/genética , Redutases do Citocromo/metabolismo , Dieta Ocidental , Modelos Animais de Doenças , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/sangue , Ácido Eicosapentaenoico/metabolismo , Predisposição Genética para Doença , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Necrose , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Fenótipo , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Circ Res ; 120(11): 1740-1753, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28420668

RESUMO

RATIONALE: The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. OBJECTIVE: To investigate hepatic T-cell subsets upon hypercholesterolemia. METHODS AND RESULTS: We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-ß1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient (Ldlr-/-) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr-/- mice led to intrahepatic Th1 cell differentiation and CD11b+CD11c+ leukocyte accumulation. CONCLUSIONS: Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4+ T-cell pool in the atherosclerotic aorta.


Assuntos
Diferenciação Celular/fisiologia , Hipercolesterolemia/sangue , Hipercolesterolemia/patologia , Fígado/citologia , Fígado/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória
17.
Circ Res ; 120(4): 633-644, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27895035

RESUMO

RATIONALE: In the search for markers and modulators of vascular disease, microRNAs (miRNAs) have emerged as potent therapeutic targets. OBJECTIVE: To investigate miRNAs of clinical interest in patients with unstable carotid stenosis at risk of stroke. METHODS AND RESULTS: Using patient material from the BiKE (Biobank of Karolinska Endarterectomies), we profiled miRNA expression in patients with stable versus unstable carotid plaque. A polymerase chain reaction-based miRNA array of plasma, sampled at the carotid lesion site, identified 8 deregulated miRNAs (miR-15b, miR-29c, miR-30c/d, miR-150, miR-191, miR-210, and miR-500). miR-210 was the most significantly downregulated miRNA in local plasma material. Laser capture microdissection and in situ hybridization revealed a distinct localization of miR-210 in fibrous caps. We confirmed that miR-210 directly targets the tumor suppressor gene APC (adenomatous polyposis coli), thereby affecting Wnt (Wingless-related integration site) signaling and regulating smooth muscle cell survival, as well as differentiation in advanced atherosclerotic lesions. Substantial changes in arterial miR-210 were detectable in 2 rodent models of vascular remodeling and plaque rupture. Modulating miR-210 in vitro and in vivo improved fibrous cap stability with implications for vascular disease. CONCLUSIONS: An unstable carotid plaque at risk of stroke is characterized by low expression of miR-210. miR-210 contributes to stabilizing carotid plaques through inhibition of APC, ensuring smooth muscle cell survival. We present local delivery of miR-210 as a therapeutic approach for prevention of atherothrombotic vascular events.


Assuntos
MicroRNAs/administração & dosagem , MicroRNAs/biossíntese , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/terapia , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Estenose das Carótidas/terapia , Células Cultivadas , Estudos de Coortes , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Microdissecção e Captura a Laser/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/análise , Placa Aterosclerótica/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle
18.
Arterioscler Thromb Vasc Biol ; 38(7): 1519-1527, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853568

RESUMO

OBJECTIVE: Androgen deprivation therapy has been associated with increased cardiovascular risk in men. Experimental studies support that testosterone protects against atherosclerosis, but the target cell remains unclear. T cells are important modulators of atherosclerosis, and deficiency of testosterone or its receptor, the AR (androgen receptor), induces a prominent increase in thymus size. Here, we tested the hypothesis that atherosclerosis induced by testosterone deficiency in male mice is T-cell dependent. Further, given the important role of the thymic epithelium for T-cell homeostasis and development, we hypothesized that depletion of the AR in thymic epithelial cells will result in increased atherosclerosis. APPROACH AND RESULTS: Prepubertal castration of male atherosclerosis-prone apoE-/- mice increased atherosclerotic lesion area. Depletion of T cells using an anti-CD3 antibody abolished castration-induced atherogenesis, demonstrating a role of T cells. Male mice with depletion of the AR specifically in epithelial cells (E-ARKO [epithelial cell-specific AR knockout] mice) showed increased thymus weight, comparable with that of castrated mice. E-ARKO mice on an apoE-/- background displayed significantly increased atherosclerosis and increased infiltration of T cells in the vascular adventitia, supporting a T-cell-driven mechanism. Consistent with a role of the thymus, E-ARKO apoE-/- males subjected to prepubertal thymectomy showed no atherosclerosis phenotype. CONCLUSIONS: We show that atherogenesis induced by testosterone/AR deficiency is thymus- and T-cell dependent in male mice and that the thymic epithelial cell is a likely target cell for the antiatherogenic actions of testosterone. These insights may pave the way for new therapeutic strategies for safer endocrine treatment of prostate cancer.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Epiteliais/metabolismo , Linfócitos T/metabolismo , Testosterona/metabolismo , Timo/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Orquiectomia , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética , Testosterona/deficiência , Timectomia , Timo/patologia , Timo/cirurgia
19.
Arterioscler Thromb Vasc Biol ; 38(8): e145-e158, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880490

RESUMO

Objective- Dyslipidemia is a component of the metabolic syndrome, an established risk factor for atherosclerotic cardiovascular disease, and is also observed in various autoimmune and chronic inflammatory conditions. However, there are limited opportunities to study the impact of acquired dyslipidemia on cardiovascular and immune pathology. Approach and Results- We designed a model system that allows for the conversion to a state of acute hyperlipidemia in adult life, so that the consequences of such a transition could be observed, through conditionally deleting APOE (apolipoprotein E) in the adult mouse. The transition to hypercholesterolemia was accompanied by adaptive immune responses, including the expansion of T lymphocyte helper cell 1, T follicular helper cell, and T regulatory subsets and the formation of germinal centers. Unlike steady-state Apoe-/- mice, abrupt loss of APOE induced rapid production of antibodies recognizing rheumatoid disease autoantigens. Genetic ablation of the germinal center reduced both autoimmunity and atherosclerosis, indicating that the immune response that follows loss of APOE is independent of atherosclerosis but nevertheless promotes plaque development. Conclusions- Our findings suggest that immune activation in response to hyperlipidemia could contribute to a wide range of inflammatory autoimmune diseases, including atherosclerosis.


Assuntos
Imunidade Adaptativa , Aorta/imunologia , Doenças da Aorta/imunologia , Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Autoimunidade , Dislipidemias/imunologia , Inflamação/imunologia , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/patologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
20.
Nature ; 556(7699): 31, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29620758
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa