Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(1): 169-184, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815460

RESUMO

Catalysts consisting of atomically dispersed Pt (Ptiso) species on CeO2 supports have received recent interest due to their potential for efficient metal utilization in catalytic convertors. However, discrepancies exist between the behavior (reducibility, interaction strength with adsorbates) of high surface area Ptiso/CeO2 systems and of well-defined surface science and computational model systems, suggesting differences in Pt local coordination in the two classes of materials. Here, we reconcile these differences by demonstrating that high surface area Ptiso/CeO2 synthesized at low Pt loadings (<0.1% weight) exhibit resistance to reduction and sintering up to 500 °C in 0.05 bar H2 and minimal interactions with CO-properties previously seen only for model system studies. Alternatively, Pt loadings >0.1 weight % produce a distribution of sub-nanometer Pt structures, which are difficult to distinguish using common characterization techniques, and exhibit strong interactions with CO and weak resistance to sintering, even in 0.05 bar H2 at 50 °C-properties previously seen for high surface area materials. This work demonstrates that low metal loadings can be used to selectively populate the most thermodynamically stable adsorption sites on high surface area supports with atomically dispersed metals. Further, the site uniformity afforded by this synthetic approach is critical for the development of relationships between atomic scale local coordination and functional properties. Comparisons to recent studies of Ptiso/TiO2 suggest a general compromise between the stability of atomically dispersed metal catalysts and their ability to interact with and activate molecular species.

2.
Environ Sci Technol ; 53(1): 316-324, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30500164

RESUMO

Removal of excess nitrate is critical to balance the nitrogen cycle in aquatic systems. This study investigated a novel denitrification process by tailoring photochemistry of nitrate with formate. Under UV light irradiation, short-lived radicals (i.e., HO•, NO2•, and CO3•-) generated from nitrate photolysis partially oxidized formate to highly reductive formate radical (CO2•-). CO2•- further reduced nitrogen intermediates generated during photochemical denitrification (mainly NO•, HNO, and N2O) to gas-phase nitrogen (i.e., N2O and N2). The degradation kinetics of total dissolved nitrogen was mainly controlled by the photolysis rates of nitrate and nitrite. The distribution of final products was controlled by the reaction between CO2•- and N2O. To achieve a simultaneous and complete removal of dissolved nitrogen (i.e., nitrate, nitrite, and ammonia) and organic carbon, the formate-to-nitrate stoichiometry was determined as 3.1 ± 0.2 at neutral pH in deionized water. Solution pH impacted the removal rates of nitrate and nitrite but not that of total dissolved nitrogen or formate. The presence of dissolved organic matter at levels similar to those in groundwater had a negligible impact on the photochemical denitrification process. A high denitrification efficiency was also achieved in a synthetic groundwater matrix. Outcome from this study provides a potential denitrification technology for decentralized water treatment and reuse facilities to abate nitrate in local water resources.


Assuntos
Desnitrificação , Nitratos , Formiatos , Nitritos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa