Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124363, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880325

RESUMO

Microplastics (MPs) are pervasive pollutants found in agricultural soils, yet research on the combined impacts of MPs and heavy metals on soil-plant systems remains limited. This study investigates the combined impact of low-density polyethylene (LDPE) microplastics (L: 1 mm, S: 100 µm, 0.1%, 1%) and Cd on soil properties, available Cd content, maize growth, and Cd accumulation by mazie through pot experiments. The findings unveiled notable impacts of the treatment groups, namely MP-L0.1%, MP-S0.1%, MP-L1%, and MP-S1%, on soil organic carbon (SOC), maize height, and catalase (CAT) activity (P < 0.05). The dosage of MPs significantly influenced maize height, MP-S0.1% treatment resulted in a 5.6% reduction, while the other groups had insignificant effects. Particle size and dosage significantly affected SOC and CAT (P < 0.01). The MP-L1% and MP-S1% groups resulted in increases of SOC by 121.5% and 281.0%, respectively. CAT reductions were 32.6%, 62.8%, 41.9%, and 34.9% in MP-L0.1%, MP-S0.1%, MP-L1%, and MP-S1% groups, individually. The Cd treatment induced a significant decrease in soil cation exchange capacity (CEC), maize stem diameter, and root length, accompanied by significant increases in maize plant height, malondialdehyde (MDA), CAT, and superoxide dismutase (SOD) activities. Combined LDPE and Cd contamination had significant effects on maize height and Cd content in leaves. Specifically, MP-L0.1%+Cd, MP-S0.1%+Cd, MP-L1%+Cd, and MP-S1%+Cd reduced maize height by 4.1%, 4.5%, 8.7%, and 13.8%, respectively. The co-presence of LDPE and Cd increased available Cd content in soil while elevating Cd concentration in maize shoots and roots, with a notable 25.5% increase in Cd concentration in maize leaves in the MP-L1%+Cd group compared to the Cd group. Furthermore, LDPE effects on soil-plant systems varied depending on particle size and dosage. This research provides important perspectives on evaluating the concurrent contamination and potential dangers of MPs and toxic metals in soil-plant environments.

2.
Environ Sci Pollut Res Int ; 29(13): 18923-18931, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34705200

RESUMO

Nitrogen dioxide (NO2) is one of the main air pollutants, formed due to both natural and anthropogenic processes, which has a significant negative impact on human health. The COVID-19 pandemic has prompted countries to take various measures, including social distancing or stay-at-home orders. This study analyzes the impact of COVID-19 lockdown measures on nitrogen dioxide (NO2) changes in Central Asian countries. Data from TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite, as well as meteorological data, make it possible to assess changes in NO2 concentration in countries and major cities in the region. In particular, the obtained satellite data show a decreased tropospheric column of NO2. Its decrease during the lockdown (March 19-April 14) ranged from - 5.1% (Tajikistan) to - 11.6% (Turkmenistan). Based on the obtained results, it can be concluded that limitations in anthropogenic activities have led to improvements in air quality. The possible influence of meteorology is not assessed in this study, and the implied uncertainties cannot be quantified. In this way, the level of air pollution is expected to decrease as long as partial or complete lockdown continues.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Pandemias , Material Particulado/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa