Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340342

RESUMO

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Assuntos
DNA Topoisomerases Tipo I , Quadruplex G , Transcrição Gênica , Humanos , DNA/química , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Ligantes , Inibidores da Topoisomerase I/farmacologia
2.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36928661

RESUMO

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Assuntos
Proteína BRCA1 , Replicação do DNA , Síndrome Hereditária de Câncer de Mama e Ovário , Mutação , Transcrição Gênica , Humanos , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Replicação do DNA/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Síndrome Hereditária de Câncer de Mama e Ovário/fisiopatologia , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Regiões Promotoras Genéticas , Metiltransferases/deficiência , Metiltransferases/genética , Estruturas R-Loop , Morte Celular
3.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37697435

RESUMO

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Instabilidade Genômica , Recidiva Local de Neoplasia , Estruturas R-Loop , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Am Chem Soc ; 146(27): 18556-18564, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943576

RESUMO

Manipulating single electrons at the atomic scale is vital for mastering complex surface processes governed by the transfer of individual electrons. Polarons, composed of electrons stabilized by electron-phonon coupling, offer a pivotal medium for such manipulation. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT) calculations, we report the identification and manipulation of a new type of polaron, dubbed van der Waals (vdW) polaron, within mono- to trilayer ultrathin films composed of Sb2O3 molecules that are bonded via vdW attractions. The Sb2O3 films were grown on a graphene-covered SiC(0001) substrate via molecular beam epitaxy. Unlike prior molecular polarons, STM imaging observed polarons at the interstitial sites of the molecular film, presenting unique electronic states and localized band bending. DFT calculations revealed the lowest conduction band as an intermolecular bonding state, capable of ensnaring an extra electron through locally diminished intermolecular distances, thereby forming an intermolecular vdW polaron. We also demonstrated the ability to generate, move, and erase such vdW polarons using an STM tip. Our work uncovers a new type of polaron stabilized by coupling with intermolecular vibrations where vdW interactions dominate, paving the way for designing atomic-scale electron transfer processes and enabling precise tailoring of electron-related properties and functionalities.

5.
J Transl Med ; 22(1): 734, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103891

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by ß-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of ß-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS: We compared the difference of ß-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of ß-catenin in the development of AF was also explored in mice and primary cells. RESULTS: Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of ß-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, ß-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3ß (GSK-3ß) and Adenomatous Polyposis Coli (APC), which participated in the degradation of ß-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting ß-catenin expression in the AF model mice. CONCLUSIONS: Based on human atrial pathological and molecular analyses, our findings provided evidence that ß-catenin was associated with atrial fibrosis and AF progression.


Assuntos
Fibrilação Atrial , Fibrose , Átrios do Coração , Miócitos Cardíacos , beta Catenina , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fibrilação Atrial/patologia , Fibrilação Atrial/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
6.
Neurochem Res ; 49(10): 2699-2724, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38916813

RESUMO

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glucose , Histona Desacetilase 1 , Mitocôndrias , Células de Schwann , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Glucose/metabolismo , Mitocôndrias/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Camundongos , Histona Desacetilase 1/metabolismo , Masculino , Diabetes Mellitus Experimental/metabolismo , Ratos , Camundongos Endogâmicos C57BL , Linhagem Celular
7.
Neurochem Res ; 49(3): 557-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063946

RESUMO

Stroke, the second-largest cause of death and the leading cause of disability globally, presents significant challenges in terms of prognosis and treatment. Identifying reliable prognosis biomarkers and treatment targets is crucial to address these challenges. Circular RNA (circRNA) has emerged as a promising research biomarkers and therapeutic targets because of its tissue specificity and conservation. However, the potential role of circRNA in stroke prognosis and treatment remains largely unexplored. This review briefly elucidate the mechanism underlying circRNA's involvement in stroke pathophysiology. Additionally, this review summarizes the impact of circRNA on different forms of strokes, including ischemic stroke and hemorrhagic stroke. And, this article discusses the positive effects of circRNA on promoting cerebrovascular repair and regeneration, maintaining the integrity of the blood-brain barrier (BBB), and reducing neuronal injury and immune inflammatory response. In conclusion, the significance of circRNA as a potential prognostic biomarker and a viable therapeutic target was underscored.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , RNA Circular/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Biomarcadores , Barreira Hematoencefálica
8.
J Org Chem ; 89(9): 6074-6084, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38626391

RESUMO

A PPh3Au[B(C6F5)4]-catalyzed reaction of enynals and alkenes for the construction of binaphthyl derivatives was described. This transformation was achieved through o-Quinodimethane (o-QDM) intermediate's extended conjugated addition process. The reaction has the advantages of wide substrate scopes, mild reaction conditions, high efficiency, and good scalability.

9.
Acta Pharmacol Sin ; 45(6): 1095-1114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267546

RESUMO

The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.


Assuntos
Estresse Fisiológico , Humanos , Animais , Estresse Fisiológico/fisiologia , Organelas/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo
10.
Ann Intern Med ; 176(4): 455-462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877964

RESUMO

BACKGROUND: Current endoscopic methods in the control of acute nonvariceal bleeding have a small but clinically significant failure rate. The role of over-the-scope clips (OTSCs) as the first treatment has not been defined. OBJECTIVE: To compare OTSCs with standard endoscopic hemostatic treatments in the control of bleeding from nonvariceal upper gastrointestinal causes. DESIGN: A multicenter, randomized controlled trial. (ClinicalTrials.gov: NCT03216395). SETTING: University teaching hospitals in Hong Kong, China, and Australia. PATIENTS: 190 adult patients with active bleeding or a nonbleeding visible vessel from a nonvariceal cause on upper gastrointestinal endoscopy. INTERVENTION: Standard hemostatic treatment (n = 97) or OTSC (n = 93). MEASUREMENTS: The primary outcome was 30-day probability of further bleeds. Other outcomes included failure to control bleeding after assigned endoscopic treatment, recurrent bleeding after initial hemostasis, further intervention, blood transfusion, and hospitalization. RESULTS: The 30-day probability of further bleeding in the standard treatment and OTSC groups was 14.6% (14 of 97) and 3.2% (3 of 93), respectively (risk difference, 11.4 percentage points [95% CI, 3.3 to 20.0 percentage points]; P = 0.006). Failure to control bleeding after assigned endoscopic treatment in the standard treatment and OTSC groups was 6 versus 1 (risk difference, 5.1 percentage points [CI, 0.7 to 11.8 percentage points]), respectively, and 30-day recurrent bleeding was 8 versus 2 (risk difference, 6.6 percentage points [CI, -0.3 to 14.4 percentage points]), respectively. The need for further interventions was 8 versus 2, respectively. Thirty-day mortality was 4 versus 2, respectively. In a post hoc analysis with a composite end point of failure to successfully apply assigned treatment and further bleeds, the event rate was 15 of 97 (15.6%) and 6 of 93 (6.5%) in the standard and OTSC groups, respectively (risk difference, 9.1 percentage points [CI, 0.004 to 18.3 percentage points]). LIMITATION: Clinicians were not blinded to treatment and the option of crossover treatment. CONCLUSION: Over-the-scope clips, as an initial treatment, may be better than standard treatment in reducing the risk for further bleeding from nonvariceal upper gastrointestinal causes that are amenable to OTSC placement. PRIMARY FUNDING SOURCE: General Research Fund to the University Grant Committee, Hong Kong SAR Government.


Assuntos
Hemorragia Gastrointestinal , Hemostase Endoscópica , Adulto , Humanos , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/cirurgia , Hemostase Endoscópica/efeitos adversos , Hemostase Endoscópica/métodos , Resultado do Tratamento , Austrália , China , Endoscopia Gastrointestinal/efeitos adversos
11.
Eur Heart J ; 44(45): 4781-4792, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37795986

RESUMO

BACKGROUND AND AIMS: Identifying patients with hypertrophic cardiomyopathy (HCM) who are candidates for implantable cardioverter defibrillator (ICD) implantation in primary prevention for sudden cardiac death (SCD) is crucial. The aim of this study was to externally validate the 2022 European Society of Cardiology (ESC) model and other guideline-based ICD class of recommendation (ICD-COR) models and explore the utility of late gadolinium enhancement (LGE) in further risk stratification. METHODS: Seven hundred and seventy-four consecutive patients who underwent cardiac magnetic resonance imaging were retrospectively enrolled. RESULTS: Forty-six (5.9%) patients reached the SCD-related endpoint during 7.4 ± 2.5 years of follow-up. Patients suffering from SCD had higher ESC Risk-SCD score (4.3 ± 2.4% vs. 2.8 ± 2.1%, P < .001) and LGE extent (13.7 ± 9.4% vs. 4.9 ± 6.6%, P < .001). Compared with the 2014 ESC model, the 2022 ESC model showed increased area under the curve (.76 vs. .63), sensitivity (76.1% vs. 43.5%), positive predictive value (16.8% vs. 13.6%), and negative predictive value (98.1% vs. 95.9%). The C-statistics for SCD prediction of 2011 American College of Cardiology (ACC)/American Heart Association (AHA), 2014 ESC, 2020 AHA/ACC, and 2022 ESC models were .68, .64, .76 and .78, respectively. Furthermore, in patients without extensive LGE, LGE ≥5% was responsible for seven-fold SCD risk after multivariable adjustment. Whether in ICD-COR II or ICD-COR III, patients with LGE ≥5% and <15% showed significantly worse prognosis than those with LGE <5% (all P < .001). CONCLUSIONS: The 2022 ESC model performed better than the 2014 ESC model with especially improved sensitivity. LGE enabled further risk stratification based on current guidelines.


Assuntos
Cardiomiopatia Hipertrófica , Desfibriladores Implantáveis , Humanos , Meios de Contraste , Gadolínio , Medição de Risco/métodos , Estudos Retrospectivos , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/terapia , Fatores de Risco , Morte Súbita Cardíaca/prevenção & controle
12.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408682

RESUMO

The pathogenesis of cancer is complex, involving abnormalities in some genes in organisms. Accurately identifying cancer genes is crucial for the early detection of cancer and personalized treatment, among other applications. Recent studies have used graph deep learning methods to identify cancer driver genes based on biological networks. However, incompleteness and the noise of the networks will weaken the performance of models. To address this, we propose a cancer driver gene identification method based on self-supervision for graph convolutional networks, which can efficiently enhance the structure of the network and further improve predictive accuracy. The reliability of SSCI is verified by the area under the receiver operating characteristic curves (AUROC), the area under the precision-recall curves (AUPRC), and the F1 score, with respective values of 0.966, 0.964, and 0.913. The results show that our method can identify cancer driver genes with strong discriminative power and biological interpretability.


Assuntos
Aprendizado Profundo , Redes Reguladoras de Genes , Neoplasias , Humanos , Neoplasias/genética , Curva ROC , Biologia Computacional/métodos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Regulação Neoplásica da Expressão Gênica , Oncogenes/genética
13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673997

RESUMO

The pathogenesis of carcinoma is believed to come from the combined effect of polygenic variation, and the initiation and progression of malignant tumors are closely related to the dysregulation of biological pathways. Quantifying the alteration in pathway activation and identifying coordinated patterns of pathway dysfunction are the imperative part of understanding the malignancy process and distinguishing different tumor stages or clinical outcomes of individual patients. In this study, we have conducted in silico pathway activation analysis using Riemannian manifold (RiePath) toward pan-cancer personalized characterization, which is the first attempt to apply the Riemannian manifold theory to measure the extent of pathway dysregulation in individual patient on the tangent space of the Riemannian manifold. RiePath effectively integrates pathway and gene expression information, not only generating a relatively low-dimensional and biologically relevant representation, but also identifying a robust panel of biologically meaningful pathway signatures as biomarkers. The pan-cancer analysis across 16 cancer types reveals the capability of RiePath to evaluate pathway activation accurately and identify clinical outcome-related pathways. We believe that RiePath has the potential to provide new prospects in understanding the molecular mechanisms of complex diseases and may find broader applications in predicting biomarkers for other intricate diseases.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisão/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Perfilação da Expressão Gênica/métodos , Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes , Simulação por Computador
14.
Sheng Li Xue Bao ; 76(5): 818-826, 2024 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-39468818

RESUMO

The kynurenine pathway (KP) is the main metabolic pathway of tryptophan in the diet. Existing research has shown that KP plays a key role in the pathogenesis of various diseases. It has been demonstrated that kynurenine metabolic enzymes, such as indoleamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO), are involved in various types of pain, particularly the occurrence and development of neuropathic pain. This article reviewed the role of KP, metabolites and enzymes, as well as the analgesic effects and mechanisms of KP in neuropathic pain, providing reference for the application of KP in the basic research and clinical treatment of neuropathic pain.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Quinurenina 3-Mono-Oxigenase , Cinurenina , Neuralgia , Triptofano , Cinurenina/metabolismo , Triptofano/metabolismo , Humanos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Animais
15.
Sheng Li Xue Bao ; 76(2): 301-308, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658378

RESUMO

Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Mialgia , Fator de Crescimento Neural , Humanos , Mialgia/fisiopatologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Transdução de Sinais , Animais , Hiperalgesia/fisiopatologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
16.
Anal Chem ; 95(35): 13330-13337, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37609864

RESUMO

Peak alignment is a crucial step in liquid chromatography-mass spectrometry (LC-MS)-based large-scale untargeted metabolomics workflows, as it enables the integration of metabolite peaks across multiple samples, which is essential for accurate data interpretation. Slight differences or fluctuations in chromatographic separation conditions, however, can cause the chromatographic retention time (RT) shift between consecutive analyses, ultimately affecting the accuracy of peak alignment between samples. Here, we introduce a novel RT shift correction method based on the retention index (RI) and apply it to peak alignment. We synthesized a series of N-acyl glycine (C2-C23) homologues via the amidation reaction between glycine with normal saturated fatty acids (C2-C23) as calibrants able to respond proficiently in both mass spectrometric positive- and negative-ion modes. Using these calibrants, we established an N-acyl glycine RI system. This RI system is capable of covering a broad chromatographic space and addressing chromatographic RT shift caused by variations in flow rate, gradient elution, instrument systems, and LC separation columns. Moreover, based on the RI system, we developed a peak shift correction model to enhance peak alignment accuracy. Applying the model resulted in a significant improvement in the accuracy of peak alignment from 15.5 to 80.9% across long-term data spanning a period of 157 days. To facilitate practical application, we developed a Python-based program, which is freely available at https://github.com/WHU-Fenglab/RI-based-CPSC.


Assuntos
Fabaceae , Cromatografia Líquida , Glicina , Espectrometria de Massas , Metabolômica
17.
Cell Mol Neurobiol ; 43(8): 4309-4332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864628

RESUMO

Diabetic encephalopathy (DE) is one of the complications of diabetes mellitus with mild-to-moderate cognitive impairment. Trichostatin A (TSA) has been revealed to show protective effect on central nervous systems in Alzheimer's disease (AD) and hypoxic-ischemic brain injury. However, the effect and molecular mechanism of TSA on cognitive function of DE are unknown. Here, we demonstrated that cognitive function was damaged in diabetic mice versus normal mice and treatment with TSA improved cognitive function in diabetic mice. Proteomic analysis of the hippocampus revealed 174 differentially expressed proteins in diabetic mice compared with normal mice. TSA treatment reversed the expression levels of 111 differentially expressed proteins grouped into functional clusters, including the longevity regulating pathway, the insulin signaling pathway, peroxisomes, protein processing in the endoplasmic reticulum, and ribosomes. Furthermore, protein-protein interaction network analysis of TSA-reversed proteins revealed that UBA52, CAT, RPL29, RPL35A, CANX, RPL37, and PRKAA2 were the main hub proteins. Multiple KEGG pathway-enriched CAT and PRKAA2 levels were significantly decreased in the hippocampus of diabetic mice versus normal mice, which was reversed by TSA administration. Finally, screening for potential similar or ancillary drugs for TSA treatment indicated that HDAC inhibitors ISOX, apicidin, and panobinostat were the most promising similar drugs, and the PI3K inhibitor GSK-1059615, the Aurora kinase inhibitor alisertib, and the nucleophosmin inhibitor avrainvillamide-analog-6 were the most promising ancillary drugs. In conclusion, our study revealed that CAT and PRKAA2 were the key proteins involved in the improvement of DE after TSA treatment. ISOX, apicidin, and panobinostat were promising similar drugs and that GSK-1059615, alisertib, and avrainvillamide-analog-6 were promising ancillary drugs to TSA in the treatment of DE.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Panobinostat , Diabetes Mellitus Experimental/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteômica , Hipocampo
18.
Eur Radiol ; 33(11): 7952-7966, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37314471

RESUMO

OBJECTIVES: To evaluate whether MRI-based T stage (TMRI), [18F]FDG PET/CT-based N (NPET/CT), and M stage (MPET/CT) are superior in NPC patients' prognostic stratification based on long-term survival evidences, and whether TNM staging method involving TMRI + NPET/CT + MPET/CT could improve NPC patients' prognostic stratification. METHODS: From April 2007 to December 2013, 1013 consecutive untreated NPC patients with complete imaging data were enrolled. All patients' initial stages were repeated based on (1) the NCCN guideline recommended "TMRI + NMRI + MPET/CT" ("MMP") staging method; (2) the traditional "TMRI + NMRI + Mconventional work-up (CWU)" ("MMC") staging method; (3) the single-step "TPET/CT + NPET/CT + MPET/CT" ("PPP") staging method; or (4) the "TMRI + NPET/CT + MPET/CT" ("MPP") staging method recommended in present research. Survival curve, ROC curve, and net reclassification improvement (NRI) analysis were used to evaluate the prognosis predicting ability of different staging methods. RESULTS: [18F]FDG PET/CT performed worse on T stage (NRI = - 0.174, p < 0.001) but better on N (NRI = 0.135, p = 0.004) and M stage (NRI = 0.126, p = 0.001). The patients whose N stage upgraded by [18F]FDG PET/CT had worse survival (p = 0.011). The "TMRI + NPET/CT + MPET/CT" ("MPP") method performed better on survival prediction when compared with "MMP" (NRI = 0.079, p = 0.007), "MMC" (NRI = 0.190, p < 0.001), or "PPP" method (NRI = 0.107, p < 0.001). The "TMRI + NPET/CT + MPET/CT" ("MPP") method could reclassify patients' TNM stage to a more appropriate stage. The improvement is significant in patients with more than 2.5-years follow-up according to the time-dependent NRI values. CONCLUSIONS: The MRI is superior to [18F]FDG PET/CT in T stage, and [18F]FDG PET/CT is superior to CWU in N/M stage. The "TMRI + NPET/CT + MPET/CT" ("MPP") staging method could significantly improve NPC patients' long-term prognostic stratification. CLINICAL RELEVANCE STATEMENT: The present research provided long-term follow-up evidence for benefits of MRI and [18F]FDG PET/CT in TNM staging for nasopharyngeal carcinoma, and proposes a new imaging procedure for TNM staging incorporating MRI-based T stage and [18F]FDG PET/CT-based N and M stage, which significantly improves long-term prognostic stratification for patients with NPC. KEY POINTS: • The long-term follow-up evidence of a large-scale cohort was provided to evaluate the advantages of MRI, [18F]FDG PET/CT, and CWU in the TNM staging of nasopharyngeal carcinoma. • A new imaging procedure for TNM stage of nasopharyngeal carcinoma was proposed.


Assuntos
Neoplasias Nasofaríngeas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/patologia , Prognóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Estadiamento de Neoplasias , Imageamento por Ressonância Magnética , Neoplasias Nasofaríngeas/patologia
19.
Mol Biol Rep ; 50(2): 993-1004, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378417

RESUMO

BACKGROUND: Evidence suggests that enolase-phosphatase 1 (ENOPH1) is involved in the progression of some certain types of cancers and acts as an oncogenic factor in tumor progression. The present study aimed to identify the central role of ENOPH1 in the progression of breast cancer (BC), a highly proliferative and aggressive disease. METHODS AND RESULTS: ENOPH1 expression in BC tissues was explored based on the online resource and 40 paired fresh BC and para-carcinoma samples. Functional assays were performed to evaluate the biological effect of ENOPH1 on cell proliferation and migration in ENOPH1-silenced or overexpressing BC cell lines. Blockade of NF-κB by BAY11-7082 was performed to evaluate whether ENOPH1 exerted tumor-promoting properties via regulating the NF-κB signaling pathway. Results of the present study demonstrated that ENOPH1 expression was profoundly upregulated in BC tissues compared with adjacent breast tissues, and ENOPH1 expression was associated with cancer stage, node metastasis status, and overall survival. Functional assays demonstrated that ENOPH1 overexpression significantly accelerated BC cell proliferation, migration, and invasion, while genetic knockdown of ENOPH1 yielded the opposite effects. Mechanistically, ENOPH1 activated the NF-κB pathway, as evidenced by increased expression of NF-κB downstream genes and enhanced NF-κB p65 nuclear translocation. Furthermore, the oncogenic properties of ENOPH1 in proliferation, migration, and invasion were restrained following inhibition of the NF-κB signaling pathway. CONCLUSIONS: These findings indicated the significance of ENOPH1 in promoting cell proliferation and invasion, mainly through activating the NF-κB pathway, suggesting that ENOPH1 might be an attractive prognostic factor and a potential target for BC therapy.


Assuntos
Neoplasias da Mama , Monoéster Fosfórico Hidrolases , Transdução de Sinais , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , NF-kappa B/genética , NF-kappa B/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
20.
Acta Pharmacol Sin ; 44(5): 1038-1050, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36470978

RESUMO

Renal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg-1·d-1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-ß1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-ß1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated ß-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of ß-catenin was responsible for Sirt3-mediated ß-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating ß-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing ß-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.


Assuntos
Nefropatias , Sirtuína 3 , Triterpenos , beta Catenina , Animais , Camundongos , Ratos , beta Catenina/química , beta Catenina/metabolismo , Fibroblastos , Fibrose/tratamento farmacológico , Fibrose/patologia , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa