Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 281-288, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147585

RESUMO

Dielectrics with high, nonvolatile, and multiple polarizations are required for fabricating memcapacitors that enable high parallelism and low energy consumption in artificial neuromorphic computing systems as artificial synapses. Conventional ferroelectric materials based on displacive and order-disorder types generally have difficulty meeting these requirements due to their low polarization values (∼150 µC/cm2) and persistent electrical hysteresis loops. In this study, we report a novel organic-inorganic hybrid (CETM)2InCl5·H2O (CETM = (CH3)3(CH2CH2Cl)N) exhibiting an intriguing polarization vs electric field (charge vs voltage) "hysteresis loop" and a record-high nonvolatile polarization over 30 000 µC/cm2 at room temperature. The polarization is highly dependent on the period and amplitude of the ac voltage, showing multiple nonvolatile states. Electrochemical impedance spectroscopy, time-dependent current behavior, disparate resistor response in the dehydrated derivative (CETM)2InCl5, and the negative temperature dependence of ionic conductance support that the memcapacitor behavior of (CETM)2InCl5·H2O stems from irreversible long-range migration of protons. First-principles calculations further confirm this and clarify the microscale mechanism of anisotropic polarization response. Our findings may open up a new avenue for developing memcapacitors by harnessing the benefits of ion migration in organic-inorganic hybrids.

2.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593470

RESUMO

The quest for high-performance piezoelectric materials has been synonymous with the pursuit of the morphotropic phase boundary (MPB), yet the full potential of MPBs remains largely untapped outside of the realm of ferroelectrics. In this study, we reveal a new class of MPB by creating continuous molecular-based solid solutions between centro- and noncentrosymmetric compounds, exemplified by (tert-butylammonium)1-x(tert-amylammonium)xFeCl4 (0 ≤ x ≤ 1), where the MPB is formed due to disorder of molecular cations. Near the MPB, we discovered an exceptionally sensitive nonlinear optical material in the centrosymmetric phase, capable of activation at pressures as low as 0.12-0.27 GPa, and producing tunable second-harmonic generation (SHG) signals from zero to 18.8 times that of KH2PO4 (KDP). Meanwhile, synchrotron diffraction experiments have unveiled a third competing phase (P212121) appearing at low pressure, forming a triple-phase point near the MPB, thereby providing insight into the mechanism underpinning the nonlinear optical (NLO) switch behavior. These findings highlight the opportunity to harness exceptional physical properties in symmetry-breaking solid solution systems by strategically designing novel MPBs.

3.
Angew Chem Int Ed Engl ; 62(15): e202300413, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36779482

RESUMO

The nanostructuring of single-molecule magnets (SMMs) on substrates, in nanotubes and periodic frameworks is highly desired for the future magnetic recording devices. However, the ability to organize SMMs into long-range ordered arrays in these systems is still lacking. Here, we report the incorporation of magnetic (RECl2 (H2 O)6 )+ (RE=rare earths) molecular groups into the framework of an organic metal halide perovskite (OMHP)-(H2 dabco)CsCl3 . Intriguingly, we show the incorporated rare-earth groups self-organized into long-range ordered arrays that uniformly and periodically distributed in the A sites of OMHP. The ordered (RECl2 (H2 O)6 )+ groups serve as SMMs in the perovskite frameworks, exhibiting large effective magnetic moment, moderate magnetic anisotropy and two-step relaxation behavior. With the additional merit of great structural flexibility and multifunction of OMHPs, the preparation of the first SMMs@OMHP magnetic materials furthers the development of molecular spintronics.

4.
Nat Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143300

RESUMO

Hydrogen bonds profoundly influence the fundamental chemical, physical and biological properties of molecules and materials. Owing to their relatively weaker interactions compared to other chemical bonds, hydrogen bonds alone are generally insufficient to induce substantial changes in electrical properties, thus imposing severe constraints on their applications in related devices. Here we report a metal-insulator transition controlled by hydrogen bonds for an organic-inorganic (1,3-diaminopropane)0.5SnSe2 superlattice that exhibits a colossal on-off ratio of 107 in electrical resistivity. The key to inducing the transition is a change in the amino group's hydrogen-bonding structure from dynamic to static. In the dynamic state, thermally activated free rotation continuously breaks and forms transient hydrogen bonds with adjacent Se anions. In the static state, the amino group forms three fixed-angle positions, each separated by 120°. Our findings contribute to the understanding of electrical phenomena in organic-inorganic hybrid materials and may be used for the design of future molecule-based electronic materials.

5.
Chem Commun (Camb) ; 59(70): 10556-10559, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578117

RESUMO

Transition metal dichalcogenides (TMDs) have attracted intensive research interest due to their diverse properties. However, ferromagnetism is not observed in layered TMDs, except for monolayer VSe2. In this study, we report the synthesis of a bulk ferromagnetic material (LiOH)0.1VS2 based on topochemical reactions. The results demonstrate that the (LiOH)0.1VS2 crystal exhibits strong anisotropic ferromagnetism below a critical temperature of 40 K. Calculations uncover that the in-plane strains in a VS2 superlattice can induce large magnetic anisotropic energy, which stabilizes the long-range ferromagnetic order. The findings provide a new approach to induce ferromagnetism in bulk TMD materials.

6.
Nat Commun ; 14(1): 6689, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865633

RESUMO

Interlayer decoupling plays an essential role in realizing unprecedented properties in atomically thin materials, but it remains relatively unexplored in the bulk. It is unclear how to realize a large crystal that behaves as its monolayer counterpart by artificial manipulation. Here, we construct a superlattice consisting of alternating layers of NbSe2 and highly porous hydroxide, as a proof of principle for realizing interlayer decoupling in bulk materials. In (NaOH)0.5NbSe2, the electric decoupling is manifested by an ideal 1D insulating state along the interlayer direction. Vibration decoupling is demonstrated through the absence of interlayer models in the Raman spectrum, dominant local modes in heat capacity, low interlayer coupling energy and out-of-plane thermal conductivity (0.28 W/mK at RT) that are reduced to a few percent of NbSe2's. Consequently, a drastic enhancement of CDW transition temperature (>110 K) and Pauling-breaking 2D superconductivity is observed, suggesting that the bulk crystal behaves similarly to an exfoliated NbSe2 monolayer. Our findings provide a route to achieve intrinsic 2D properties on a large-scale without exfoliation.

7.
Innovation (Camb) ; 3(2): 100204, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35128503

RESUMO

Pyroelectrics are a class of polar compounds that output electrical signals upon changes in temperature. With the rapid development of flexible electronics, organic pyroelectrics are highly desired. However, most organics suffer from low pyroelectric coefficients or low working temperatures. To date, the realization of superior pyroelectric performance in all-organics has remained a challenge. Here, we report the discovery of amantadine formate, an all-organic pyroelectric with ultrahigh voltage figures of merit (F v), surpassing those of all other known organics and commercial triglycine sulfate, LiTaO3 as well around room temperature. The key to the high F v is attributed to large pyroelectric coefficients in a favorable temperature range resulting from a ferroelectric-paraelectric phase transition of second order at 327 K, small dielectric constant, and moderate heat capacity. In addition, amantadine formate is relatively lightweight, soft, transparent, low-cost, and non-toxic, adding value to its potential applications in flexible electronics. Our results demonstrate that a new type of pyroelectrics can exist in organic compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa