Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 61(4): 507-519, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26876937

RESUMO

The regulatory role of N(6)-methyladenosine (m(6)A) and its nuclear binding protein YTHDC1 in pre-mRNA splicing remains an enigma. Here we show that YTHDC1 promotes exon inclusion in targeted mRNAs through recruiting pre-mRNA splicing factor SRSF3 (SRp20) while blocking SRSF10 (SRp38) mRNA binding. Transcriptome assay with PAR-CLIP-seq analysis revealed that YTHDC1-regulated exon-inclusion patterns were similar to those of SRSF3 but opposite of SRSF10. In vitro pull-down assay illustrated a competitive binding of SRSF3 and SRSF10 to YTHDC1. Moreover, YTHDC1 facilitates SRSF3 but represses SRSF10 in their nuclear speckle localization, RNA-binding affinity, and associated splicing events, dysregulation of which, as the result of YTHDC1 depletion, can be restored by reconstitution with wild-type, but not m(6)A-binding-defective, YTHDC1. Our findings provide the direct evidence that m(6)A reader YTHDC1 regulates mRNA splicing through recruiting and modulating pre-mRNA splicing factors for their access to the binding regions of targeted mRNAs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Éxons , Células HeLa , Humanos , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina
2.
J Am Chem Soc ; 145(4): 2511-2522, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652392

RESUMO

Exploration of new methodologies to tune catalytic selectivity is a long-sought goal in catalytic community. In this work, oil-water interfaces of Pickering emulsions are developed to effectively regulate catalytic selectivity of hydrogenation reactions, which was achieved via a precise control of the spatial distribution of metal nanoparticles at the droplet interfaces. It was found that Pd nanoparticles located in the inner interfacial layer of Pickering droplets exhibited a significantly enhanced selectivity for p-chloroaniline (up to 99.6%) in the hydrogenation of p-chloronitrobenzene in comparison to those in the outer interfacial layer (63.6%) in pure water (68.5%) or in pure organic solvents (46.8%). Experimental and theoretical investigations indicated that such a remarkable interfacial microregion-dependent catalytic selectivity was attributed to the microenvironments of the coexistence of water and organic solvent at the droplet interfaces, which could provide unique interfacial hydrogen-bonding interactions and solvation effects so as to alter the adsorption patterns of p-chloronitrobenzene and p-chloroaniline on the Pd nanoparticles, thereby avoiding the unwanted contact of C-Cl bonds with the metal surfaces. Our strategy of precise spatial control of catalysts at liquid-liquid interfaces and the unprecedented interfacial effect reported here not only provide new insights into the liquid-liquid interfacial reactions but also open an avenue to boost catalytic selectivity.

3.
Emerg Infect Dis ; 29(7): 1425-1428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347816

RESUMO

Candida vulturna belongs to the Candida haemulonii species complex and is phylogenetically related to C. auris. We report a C. vulturna outbreak among persons in Shanxi Province, China, during 2019-2022. Isolates were resistant to multiple antifungal drugs and exhibited enhanced adhesion and biofilm formation properties.


Assuntos
Candida , Candidíase , Candidíase/epidemiologia , Candidíase/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , China/epidemiologia , Testes de Sensibilidade Microbiana
4.
Langmuir ; 38(30): 9421-9430, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849727

RESUMO

Multilevel porous architectures with microscopic shape control and tailor-made complex structures offer great potential for various innovative applications, but their elaborate design and synthesis have remained a scientific and technological challenge. Herein, we report a simple and effective tri-templating method, in which microscale Pickering droplets, nanoscale polystyrene colloids (PS), and molecular cetyltrimethylammonium chloride micelles are synchronously employed, for the fabrication of such micro-nanohierarchical mesoporous silica microspheres. In this protocol, Pickering droplet-directed interfacial sol-gel growth and its spatially confined surfactant assembly-directed sol-gel coating on PS suspensions are coupled together, enabling the successful formation of structured mesoporous silica that consists of numerous nanocompartments enclosed by a permeable shell. By varying the quantity of PS colloidal templates, rational regulation of the complex interior structure is achieved. Also, ascribed to the multilevel arrangement, this peculiar architecture not only shows desirable fast mass transport of external molecules but also possesses easy handling ability. After loading with tetraethylenepentamine or enzyme species, the yielded microspherical CO2 sorbents or immobilized biocatalysts, respectively, exhibit enhanced CO2 capture capacity and enzymatic catalysis efficiency. Notably, taking advantage of their microscopic characteristics, the immobilized biocatalysts could be ideally packed in a fixed-bed reactor for long-term continuous-flow enzymatic reactions. This tri-templating strategy provides a new synthetic route to access other multilevel microscopic materials with fascinating complex structures and paves a way to promote their practical applications.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Catálise , Enzimas Imobilizadas , Microesferas , Porosidade , Dióxido de Silício/química
5.
J Am Chem Soc ; 143(2): 612-616, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33382247

RESUMO

The molecular structure of Sc3N@C2v(7854)-C70 was determined by single-crystal X-ray diffraction. Variable-temperature X-ray diffraction analysis unraveled the details of the phase transition caused by the temperature-driven jumplike rotation of the fullerene cage between two orientations. Whereas in the lower-temperature P21/c phase the fullerene predominantly occupies one orientation, two orientations become equally occupied in the higher-temperature C2/m phase. This work provides a rare example of the well-defined order-disorder transition in metallofullerene crystals and thus gives important insight into the problem of disorder impeding metallofullerene crystallography.

6.
Mol Cell ; 49(1): 18-29, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23177736

RESUMO

N(6)-methyladenosine (m(6)A) is the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes. Here we report ALKBH5 as another mammalian demethylase that oxidatively reverses m(6)A in mRNA in vitro and in vivo. This demethylation activity of ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles. Alkbh5-deficient male mice have increased m(6)A in mRNA and are characterized by impaired fertility resulting from apoptosis that affects meiotic metaphase-stage spermatocytes. In accordance with this defect, we have identified in mouse testes 1,551 differentially expressed genes that cover broad functional categories and include spermatogenesis-related mRNAs involved in the p53 functional interaction network. The discovery of this RNA demethylase strongly suggests that the reversible m(6)A modification has fundamental and broad functions in mammalian cells.


Assuntos
Dioxigenases/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Homólogo AlkB 5 da RNA Desmetilase , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Dioxigenases/química , Dioxigenases/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Infertilidade Masculina/enzimologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Tamanho do Órgão , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Interferência de RNA , RNA Mensageiro/química , Espermatogênese/genética , Testículo/enzimologia , Testículo/patologia , Transcriptoma
7.
Acc Chem Res ; 52(7): 1802-1811, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31241888

RESUMO

The sub-nanometer sized void inside a fullerene cage permits the accommodation of a single atom, atomic cluster, or even small molecule, resulting in the formation of endohedral fullerenes. Particularly, clusterfullerenes can be formed by encapsulating multiple metallic ions in most cases along with nonmetal ions (i.e., N3-, C22-, S2-, O2-) inside the fullerene cage. Such an association makes clusterfullerene more functional than empty fullerenes and conventional mono-metallofullerenes. To date, a variety of clusterfullerenes have been reported, including metal nitrides, carbides, oxides, sulfides, cyanides, and so on. Among them, oxide clusterfullerenes (OCFs) can contain variable oxide clusters (i.e., M4O2, M4O3, M3O, and M2O; M = Sc or other metal), yielding one of the most versatile families. Thus, OCFs may provide a more convenient platform for developing new functional molecules and for studying previously less-explored topics such as formation mechanisms of clusterfullerenes. In this Account, we review recent progress in the field of OCFs, including their synthesis, isolation, and structural and electrochemical studies as well as the preliminary exploration into their potential functions and applications. Thanks to the concrete crystallographic results of an OCF series, we can track the transition of endohedral cluster and fullerene cage. It is suggested that the configuration and internal dynamics of the oxide cluster are highly dependent on not only the cage size but also cage structure. On the other hand, based on the experimental observations, two competitive transformation pathways are established for the majority of OCFs, verifying the bottom-up or top-down formation mechanism. It is also found that the redox behaviors of OCFs are more or less comparable to their isoelectronic species with common cage structure and similar cluster geometry but varied greatly with the cluster variety (i.e., Sc2O vs Sc4O2-3). The mechanism behind such phenomena has been discussed. In addition, the potential of Dy-based OCFs as single molecular magnets (SMMs) is presented theoretically. Nevertheless, experimental advance remains to be achieved.

8.
Gut ; 68(6): 1024-1033, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29954840

RESUMO

OBJECTIVES: Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN: We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS: WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS: ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER: NCT02442414;Pre-results.


Assuntos
Antígeno B7-H1/genética , Sequenciamento do Exoma , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/imunologia , Receptor ErbB-2/genética , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/efeitos dos fármacos , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Genômica , Humanos , Masculino , Terapia de Alvo Molecular , Medição de Risco , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos
9.
Cancer Sci ; 110(11): 3510-3519, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31487418

RESUMO

NOP2/Sun domain family, member 2 (NSUN2) is a nuclear RNA methyl-transferase catalyzing 5-methylcytosine formation. Evidence shows that NSUN2 is correlated with cell unlimited proliferation. However, its functional role in gallbladder carcinoma (GBC), which is the most common biliary tract malignancy and has a poor prognosis, remains to be determined. Here we found that NSUN2 was highly expressed in GBC tissues as well as cell lines. NSUN2 silencing repressed GBC cell proliferation and tumorigenesis both in vitro and in vivo. Conversely, upregulation of NSUN2 enhanced GBC cell growth and colony formation. We further discovered that RPL6 was a closely interacting partner with NSUN2. Silencing RPL6 resulted in insufficient NSUN2 translational level and accumulative NSUN2 transcriptional level. Exogenous expression of NSUN2 partially rescued the effect of RPL6 in gallbladder cancer progression. Taken together, our data provided novel mechanic insights into the function of NSUN2 in GBC, thus pointing to NSUN2 as a potential and effective therapeutic approach to GBC treatment.


Assuntos
Carcinoma/metabolismo , Neoplasias da Vesícula Biliar/metabolismo , Metiltransferases/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Carcinoma/patologia , Carcinoma/terapia , Linhagem Celular Tumoral , Proliferação de Células , Colecistite/metabolismo , Progressão da Doença , Neoplasias da Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/terapia , Humanos , Metiltransferases/antagonistas & inibidores , Camundongos , Camundongos Nus , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
10.
Inorg Chem ; 58(16): 10905-10911, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31356062

RESUMO

Fullerene C84 is the third-most-abundant species after C60 and C70. In the past decade, a variety of C84-based clusterfullerenes have been well-studied experimentally, which otherwise do not include oxide clusterfullerenes (OCFs). In this work, we report a comprehensive inspection of Ho2O@C84, including its mass, spectroscopic, crystallographic, electrochemical (EC), and density functional theory (DFT) studies. Importantly, crystallographic data reveal an IPR cage of D2d(51591)-C84 with a linear endohedral Ho-O-Ho cluster, indicating that the compression effect of the C84 cage is less pronounced compared to that of a smaller cage. The experimentally observed structure is confirmed by DFT computations, which also verify its superior stability. Further studies suggest that Ho2O@C84 has reduced EC and HOMO-LUMO gaps compared to those of empty species, again demonstrating the effect of cluster encapsulation.

11.
Inorg Chem ; 58(8): 4774-4781, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30938991

RESUMO

Steering the cluster configuration inside a fullerene cage has been one of most interesting topics in the field of fullerenes, since the physical property of a cluster fullerene may be modified accordingly. It has been well-recognized that the cluster configuration can be tuned via altering the cage size. Typically, the carbide cluster and the oxide cluster are experimentally seen to be curled up within a small fullerene cage whereas they are expanded in a large cage. In this work, a new oxide cluster fullerene Ho2O@ C2(13333)-C74 is prepared and isolated. The single-crystal X-ray diffraction (XRD) study reveals that the Ho2O cluster, however, expands within the small non-IPR cage of C2(13333)-C74 with a Ho-O-Ho angle of >170°, indicating that cluster configuration is highly related to the cage shape and cage structure as well. The DFT computation demonstrates that the cluster-to-cage electron-transfer obviously enhances the aromaticity of the motif containing the fused-pentagon pair and hence stabilizes the non-IPR cage of C2(13333)-C74. In addition, the electrochemical and magnetic properties of Ho2O@ C2(13333)-C74 are studied to further investigate the effect of endohedral Ho2O cluster.

12.
Cancer Sci ; 109(5): 1532-1544, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575299

RESUMO

Gallbladder cancer (GBC) is the most common malignant tumor of the biliary tract system. Epithelial-mesenchymal transition (EMT) plays a vital role in the process of tumor metastasis. Mesenchymal-like cells can serve as a source of cancer stem cells, which can confer the EMT phenotype. Placental growth factor (PLGF) belongs to the vascular endothelial growth factor family and plays a vital role in cancer. However, the underlying molecular mechanisms about the influence of PLGF on EMT in GBC remain unknown. Here we show that PLGF expression levels were higher in GBC tissues than in normal adjacent tissues and were associated with poor prognosis in GBC patients. Exogenous PLGF enhanced the migration, invasion, and tumorsphere formation of GBC cells. Conversely, knockdown of PLGF decreased the aggressive phenotype of GBC cells. Mechanistically, exogenous PLGF upregulated microRNA-19a (miR-19a) expression through the activation of c-MYC. Moreover, Spearman's correlation analysis showed a positive pairwise correlation among PLGF, c-MYC, and miR-19a expression in GBC tissues. Taken together, these results suggest that PLGF promotes EMT and tumorsphere formation through inducing miR-19a expression by upregulating c-MYC. Thus, PLGF could be a promising molecular therapeutic target for GBC.


Assuntos
Neoplasias da Vesícula Biliar/patologia , MicroRNAs/fisiologia , Fator de Crescimento Placentário/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Neoplasias da Vesícula Biliar/mortalidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica
13.
Cell Physiol Biochem ; 48(1): 274-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30007968

RESUMO

BACKGROUND/AIMS: The role of ZFX in tumourigenesis is unclear. We aimed to study ZFX expression, regulation, and function and the clinical implications of this protein in human pancreatic cancer (PCa). METHODS: One hundred and twenty patients with histologically confirmed PCa who underwent surgery were recruited for this study. Tumour samples and PCa cell lines were used to examine ZFX. Various cell functions related to tumourigenesis were assessed. In vivo mouse tumour xenografts were used to confirm the in vitro results. RESULTS: Patients with ZFX-positive tumours had worse overall survival than patients with ZFX-negative tumours. The depletion of ZFX using lentiviral shRNAs significantly inhibited cell proliferation by inducing cell cycle arrest in G0/G1 phase and resulted in increased cell apoptosis and invasive repression. In vivo studies confirmed that ZFX promoted tumour growth. Mechanistically, MAPK pathway activation was involved in the oncogenic functions of ZFX. CONCLUSIONS: ZFX acts as a putative oncogene in PCa and could be a novel therapeutic target for this disease.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Estimativa de Kaplan-Meier , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo
14.
Cancer Sci ; 108(6): 1240-1252, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378944

RESUMO

Metformin is the most commonly used drug for type 2 diabetes and has potential benefit in treating and preventing cancer. Previous studies indicated that membrane proteins can affect the antineoplastic effects of metformin and may be crucial in the field of cancer research. However, the antineoplastic effects of metformin and its mechanism in gallbladder cancer (GBC) remain largely unknown. In this study, the effects of metformin on GBC cell proliferation and viability were evaluated using the Cell Counting Kit-8 (CCK-8) assay and an apoptosis assay. Western blotting was performed to investigate related signaling pathways. Of note, inhibition, knockdown and upregulation of the membrane protein Chloride intracellular channel 1 (CLIC1) can affect GBC resistance in the presence of metformin. Our data demonstrated that metformin apparently inhibits the proliferation and viability of GBC cells. Metformin promoted cell apoptosis and increased the number of early apoptotic cells. We found that metformin can exert growth-suppressive effects on these cell lines via inhibition of p-Akt activity and the Bcl-2 family. Notably, either dysfunction or downregulation of CLIC1 can partially decrease the antineoplastic effects of metformin while upregulation of CLIC1 can increase drug sensitivity. Our findings provide experimental evidence for using metformin as an antitumor treatment for gallbladder carcinoma.


Assuntos
Antineoplásicos/farmacologia , Canais de Cloreto/metabolismo , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/metabolismo , Metformina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 494(3-4): 719-727, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29079189

RESUMO

C-terminal Src kinase (Csk)-binding protein (Cbp) is a ubiquitously expressed transmembrane adaptor protein which regulating Src family kinase (SFK) activities. Although SFKs are well known for their involvement in breast cancer, the function of Cbp in breast carcinogenesis upon the adipose-tumor microenvironment has not been investigated. Here, we reported that adipose-derived mesenchymal stem cells (ASCs) induced increased expression of Cbp accompanied by enhanced cell proliferation and chemotherapy resistance in breast cancer cell MCF-7/ADR. Depletion of Cbp in breast cancer cell by RNA interference led to remarkable inhibition of cell proliferation, invasion as well as synergy with adriamycin hydrochloride to suppress the tumor growth. Furthermore, silencing of Cbp concomitantly inhibited the expression of phosphoryl of Src, AKT and mTOR signals. Our study highlights the underlying mechanism of cross interaction between ASCs and breast cancer cells, and indicates that PAG1/Cbp in breast cancer cell may modulate tumor progression and acquired chemoresistance in the ASCs-associated breast cancer microenvironment through Src and AKT/mTOR pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral , Adipócitos/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinogênese , Humanos , Células MCF-7 , Células-Tronco Mesenquimais/patologia , Regulação para Cima
16.
Inorg Chem ; 55(4): 1926-33, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26840749

RESUMO

By introducing CO2 as the oxygen source during the arcing process, a new isomer of Sc2O@C82, Sc2O@C(3v)(8)-C82, previously investigated only by computational studies, was discovered and characterized by mass spectrometry, UV-vis-NIR absorption spectroscopy, cyclic voltammetry, (45)Sc NMR, density functional theory (DFT) calculations, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously elucidated that the cage symmetry was assigned to C(3v)(8) and suggests that Sc2O cluster is disordered inside the cage. The comparative studies of crystallographic data further reveal that the Sc1-O-Sc2 angle is in the range of 131.0-148.9°, much larger than that of the Sc2S@C(3v)(8)-C82, demonstrating a significant flexibility of dimetallic clusters inside the cages. The electrochemical studies show that the electrochemical gap of Sc2O@C(3v)(8)-C82 is 1.71 eV, the largest among those of the oxide cluster fullerenes (OCFs) reported so far, well correlated with its rich abundance in the reaction mixture of OCF synthesis. Moreover, the comparative electrochemical studies suggest that both the dimetallic clusters and the cage structures have major influences on the electronic structures of the cluster fullerenes. Computational studies show that the cluster can rotate and change the Sc-O-Sc angle easily at rather low temperature.

17.
Inorg Chem ; 55(21): 11354-11361, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27718548

RESUMO

It has been proposed that the fullerene formation mechanism involves either a top-down or bottom-up pathway. Despite different starting points, both mechanisms approve that particular fullerenes or metallofullerenes are formed through a consecutive stepwise process involving Stone-Wales transformations (SWTs) and C2 losses or additions. However, the formation pathway has seldomly been defined at the atomic level due to the missing-link fullerenes. Herein, we present the isolation and crystallographic characterization of two isomeric clusterfullerenes Sc2O@C2v(3)-C78 and Sc2O@D3h(5)-C78, which are closely related via a single-step Stone-Wales (SW) transformation. More importantly, these novel Sc2O@C78 isomers represent the key links in a well-defined formation pathway for the majority of solvent-extractable clusterfullerenes Sc2O@C2n (n = 38-41), providing molecular structural evidence for the less confirmed fullerene formation mechanism. Furthermore, DFT calculations reveal a SWT with a notably low activation barrier for these Sc2O@C78 isomers, which may rationalize the established fullerene formation pathway. Additional characterizations demonstrate that these Sc2O@C78 isomers feature different energy bandgaps and electrochemical behaviors, indicating the impact of SW defects on the energetic and electrochemical characteristics of metallofullerenes.

18.
Chemistry ; 21(31): 11110-7, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26088830

RESUMO

A new cluster fullerene, Sc2 O@Td (19151)-C76 , has been isolated and characterized by mass spectrometry, UV/Vis/NIR absorption, (45) Sc NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously assigned the cage structure as Td (19151)-C76 , which is the first tetrahedral fullerene cage characterized by single-crystal X-ray diffraction. This study also demonstrated that the Sc2 O cluster has a much smaller ScOSc angle than that of Sc2 O@Cs (6)-C82 and the Sc2 O unit is fully ordered inside the Td (19151)-C76 cage. Computational studies further revealed that the cluster motion of the Sc2 O is more restrained in the Td (19151)-C76 cage than that in the Cs (6)-C82 cage. These results suggest that cage size affects not only the shapes but also the cluster motion inside fullerene cages.

19.
Inorg Chem ; 54(5): 2103-8, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25679437

RESUMO

Two Sm@C82 isomers have been well characterized for the first time by means of (13)C NMR spectroscopy, and their structures were unambiguously determined as Sm@C2v(9)-C82 and Sm@C3v(7)-C82, respectively. A combined study of single crystal X-ray diffraction and theoretical calculations suggest that in Sm@C2v(9)-C82 the preferred Sm(2+) ion position shall be located in a region slightly off the C2 axis of C2v(9)-C82. Moreover, the electrochemical surveys on these Sm@C82 isomers reveal that their redox activities are mainly determined by the properties of their carbon cages.

20.
Inorg Chem ; 54(9): 4243-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25782103

RESUMO

Although a non-IPR fullerene cage is common for endohedral cluster fullerenes, it is very rare for conventional endofullerenes M@C2n, probably because of the minimum geometry fit effect of the endohedral single metal ion. In this work, we report on a new non-IPR endofullerene Sm@C2v(19138)-C76, including its structural and electrochemical features. A combined study of single-crystal X-ray diffraction and DFT calculations not only elucidates the non-IPR cage structure of C2v(19138)-C76 but also suggests that the endohedral Sm(2+) ion prefers to reside along the C2 cage axis and close to the fused pentagon unit in the cage framework, indicative of a significant metal-cage interaction, which alone can stabilize the non-IPR cage. Furthermore, electrochemical studies reveal the fully reversible redox behaviors and small electrochemical gap of Sm@C2v(19138)-C76, which are comparable to those of IPR species Sm@D3h-C74.


Assuntos
Fulerenos/química , Níquel/química , Cátions Bivalentes , Cristalografia por Raios X , Técnicas Eletroquímicas , Isomerismo , Estrutura Molecular , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa