Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791188

RESUMO

In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.


Assuntos
Células Matadoras Naturais , Células Supressoras Mieloides , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fator de Necrose Tumoral alfa , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Ativação Linfocitária/imunologia , Diferenciação Celular , Ligantes , Proteína ADAM17/metabolismo
2.
Front Immunol ; 15: 1345046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827732

RESUMO

Introduction: Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods: To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results: IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1ß generation, and thereby further amplifying Th1 response. Discussion: Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.


Assuntos
Diferenciação Celular , Interferon gama , Melanoma Experimental , Camundongos Endogâmicos C57BL , Células Th1 , Animais , Células Th1/imunologia , Camundongos , Interferon gama/metabolismo , Diferenciação Celular/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Crioterapia/métodos , Linhagem Celular Tumoral , Feminino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa