Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biomed Sci ; 31(1): 6, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216921

RESUMO

The developments of antibodies for cancer therapeutics have made remarkable success in recent years. There are multiple factors contributing to the success of the biological molecule including origin of the antibody, isotype, affinity, avidity and mechanism of action. With better understanding of mechanism of cancer progression and immune manipulation, recombinant formats of antibodies are used to develop therapeutic modalities for manipulating the immune cells of patients by targeting specific molecules to control the disease. These molecules have been successful in minimizing the side effects instead caused by small molecules or systemic chemotherapy but because of the developing therapeutic resistance against these antibodies, combination therapy is thought to be the best bet for patient care. Here, in this review, we have discussed different aspects of antibodies in cancer therapy affecting their efficacy and mechanism of resistance with some relevant examples of the most studied molecules approved by the US FDA.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Fatores Imunológicos/uso terapêutico
2.
FASEB J ; 36(5): e22307, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35394702

RESUMO

Cardiac arrest (CA) produces global ischemia/reperfusion injury resulting in substantial multiorgan damage. There are limited efficacious therapies to save lives despite CA being such a lethal disease process. The small population of surviving patients suffer extensive brain damage that results in substantial morbidity. Mitochondrial dysfunction in most organs after CA has been implicated as a major source of injury. Metformin, a first-line treatment for diabetes, has shown promising results in the treatment for other diseases and is known to interact with the mitochondria. For the treatment of CA, prior studies have utilized metformin in a preconditioning manner such that animals are given metformin well before undergoing CA. As the timing of CA is quite difficult to predict, the present study, in a clinically relevant manner, sought to evaluate the therapeutic benefits of metformin administration immediately after resuscitation using a 10 min asphxyial-CA rat model. This is the first study to show that metformin treatment post-CA (a) improves 72 h survival and neurologic function, (b) protects mitochondrial function with a reduction in apoptotic brain injury without activating AMPK, and (c) potentiates earlier normalization of brain electrophysiologic activity. Overall, as an effective and safe drug, metformin has the potential to be an easily translatable intervention for improving survival and preventing brain damage after CA.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Metformina , Animais , Modelos Animais de Doenças , Eletroencefalografia , Parada Cardíaca/tratamento farmacológico , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias , Neuroproteção , Ratos
3.
Microb Pathog ; 158: 105082, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34265371

RESUMO

Typhoid fever is a serious systemic infection caused by Salmonella Typhi (S. Typhi), spread by the feco-oral route and closely associated with poor food hygiene and inadequate sanitation. Nearly 93% of S. Typhi strains have acquired antibiotic resistance against most antibiotics. Vaccination is the only promising way to prevent typhoid fever. This review covers the nature and composition of S. Typhi, pathogenecity and mode of infection, epidemiology, and nature of drug resistance. Several components (Vi-polysaccharides, O-antigens, flagellar antigens, full length OMPs, and short peptides from OMPs) of S. Typhi have been utilized for vaccine design for protection against typhoid fever. Vaccine delivery systems also contribute to efficacy of the vaccines. In this study, we propose to develop S. Typhi derived OMVs as vaccine for protection against typhoid fevers.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Vacinas , Humanos , Antígenos O , Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide/prevenção & controle
4.
Biologicals ; 62: 50-56, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606267

RESUMO

Salmonella typhi is a causative organism for typhoid fever. Free Vi capsular polysaccharide (Vi) is licensed for use as vaccine for typhoid fever in individuals 2 years of age and older, which has limited memory response. There is dire need of protein or peptide as conjugate partner with Vi polysaccharide to improve shortcomings of Vi vaccine. Prediction of immunogenic peptide was deduced by program T sites. Carbodiimide mediated conjugation of Vi polysaccharide with OmpCp was performed utilizing ADH as linker. Immune response of Vi-conjugates along with control group was tested in mice. Ig and IgG antibodies against Vi polysaccharide was measured by ELISA. Two immunodominant regions (loop number 3a and 7) with high content of T-cell epitopes from OmpC was selected and synthesized. Vi poly/OmpCp ratios in Vi-conjugates were ~0.43-0.65. Vi polysaccharide alone elicited very low levels of Vi antibody without any booster effect. Vi-conjugate evoked 20-fold higher immune response compared to free Vi. Further, adequate levels of IgG antibodies were induced only by the Vi-conjugate suggesting that T-helper cells had been induced. Our data suggest that selected short peptide (OmpCp)as a carrier with Vi polysaccharide is assumed to be a promising molecule for candidate vaccine for typhoid fever.


Assuntos
Proteínas de Bactérias/imunologia , Polissacarídeos Bacterianos/imunologia , Porinas/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhi/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Feminino , Imunoglobulina G/imunologia , Camundongos , Febre Tifoide/imunologia , Febre Tifoide/prevenção & controle
5.
Am J Pathol ; 186(2): 347-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683666

RESUMO

Dysregulated growth and loss of podocytes are important features of HIV-associated nephropathy. Recently, HIV was reported to induce a new type of programed cell death, pyroptosis, in T lymphocytes through induction of Nod-like receptor protein 3 (NLRP3) inflammasome complexes. We evaluated the role of HIV in podocyte NLRP3 inflammasome formation both in vivo and in vitro. Renal cortical sections of HIV-transgenic mice (Tg26) displayed increased expression of NLRP3, ASC (a CARD protein), caspase-1, and IL-1ß proteins, confirming NLRP3 inflammasome complex formation in podocytes of Tg26 mice. Renal tissues of Tg26 mice also displayed enhanced mRNA levels and protein expressions of inflammasome markers (NLRP3, ASC, and caspase-1, and IL-1ß). Serum of Tg26 mice also showed elevated concentrations of IL-1ß cytokine compared with FVBN mice. HIV induced pyroptosis in a dose- and time-dependent manner within podocytes, a phenotype of inflammasome activation. Caspase-1 inhibitor not only attenuated podocyte expression of caspase-1 and IL-1ß but also provided protection against pyroptosis, suggesting that HIV-induced podocyte injury was mediated by caspase-1 activation. Interestingly, HIV-induced podocyte pyroptosis could be partially inhibited by Tempol (a superoxide dismutase-mimetic agent) and by glyburide (an inhibitor of potassium efflux). These findings suggest that generation of reactive oxygen species and potassium efflux contribute to HIV-induced pyroptosis and NLRP3 inflammasome activation in podocytes.


Assuntos
Nefropatia Associada a AIDS/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Podócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/fisiologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Podócitos/virologia
6.
Exp Mol Pathol ; 102(1): 97-105, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28069388

RESUMO

Vitamin D receptor (VDR) deficient status has been shown to be associated with the activation of renin angiotensin system (RAS). We hypothesized that lack of VDR would enhance p53 expression in podocytes through down regulation of SIRT1; the former would enhance the transcription of angiotensinogen (Agt) and angiotensinogen II type 1 receptor (AT1R) leading to the activation of RAS. Renal tissues of VDR mutant (M) mice displayed increased expression of p53, Agt, renin, and AT1R. In vitro studies, VDR knockout podocytes not only displayed up regulation p53 but also displayed enhanced expression of Agt, renin and AT1R. VDR deficient podocytes also displayed an increase in mRNA expression for p53, Agt, renin, and AT1R. Interestingly, renal tissues of VDR-M as well as VDR heterozygous (h) mice displayed attenuated expression of deacetylase SIRT1. Renal tissues of VDR-M mice showed acetylation of p53 at lysine (K) 382 residues inferring that enhanced p53 expression in renal tissues could be the result of ongoing acetylation, a consequence of SIRT1 deficient state. Notably, podocytes lacking SIRT1 not only showed acetylation of p53 at lysine (K) 382 residues but also displayed enhanced p53 expression. Either silencing of SIRT1/VDR or treatment with high glucose enhanced podocyte PPAR-y expression, whereas, immunoprecipitation (IP) of their lysates with anti-retinoid X receptor (RXR) antibody revealed presence of PPAR-y. It appears that either the deficit of SIRT1 has de-repressed expression of PPAR-y or enhanced podocyte expression of PPAR-y (in the absence of VDR) has contributed to the down regulation of SIRT1.


Assuntos
Podócitos/metabolismo , Receptores de Calcitriol/genética , Sistema Renina-Angiotensina/genética , Sirtuína 1/genética , Acetilação , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Animais , Western Blotting , Células Cultivadas , Humanos , Rim/citologia , Rim/metabolismo , Lisina/genética , Lisina/metabolismo , Camundongos Knockout , Modelos Genéticos , Podócitos/citologia , Interferência de RNA , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Calcitriol/deficiência , Renina/genética , Renina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Am J Physiol Renal Physiol ; 309(3): F189-203, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26084932

RESUMO

ANG II type 1 receptor blockade (AT1R-BLK) is used extensively to slow down the progression of proteinuric kidney diseases. We hypothesized that AT1R-BLK provides podocyte protection through regulation of silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and vitamin D receptor (VDR) expression under adverse milieus such as high glucose and human immunodeficiency virus infection. Both AT1R-BLK and VDR agonists (VDAs) stimulated VDR complex formation that differed not only in their composition but also in their functionality. AT1R-BLK-induced VDR complexes contained predominantly unliganded VDR, SMRT, and phosphorylated histone deacetylase 3, whereas VDA-VDR complexes were constituted by liganded VDR and CREB-binding protein/p300. AT1R-BLK-induced complexes attenuated podocyte acetyl-histone 3 levels as well as cytochrome P-450 family 24A1 expression, thus indicating their deacetylating and repressive properties. On the other hand, VDA-VDR complexes not only increased podocyte acetyl-histone 3 levels but also enhanced cytochrome P-450 family 24A1 expression, thus suggesting their acetylating and gene activation properties. AT1R-BLK- induced podocyte SMRT inhibited expression of the proapoptotic gene BAX through downregulation of Wip1 and phosphorylation of checkpoint kinase 2 in high-glucose milieu. Since SMRT-depleted podocytes lacked AT1R-BLK-mediated protection against DNA damage, it appears that SMRT is necessary for DNA repairs during AT1R-BLK. We conclude that AT1R-BLK provides podocyte protection in adverse milieus predominantly through SMRT expression and partly through unliganded VDR expression in 1,25(OH)2D-deficient states; on the other hand, AT1R-BLK contributes to liganded VDR expression in 1,25(OH)2D-sufficient states.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Correpressor 2 de Receptor Nuclear/fisiologia , Acetilação , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Correpressoras/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Histonas/metabolismo , Humanos , Losartan/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/enzimologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptores de Calcitriol/efeitos dos fármacos , Vitamina D3 24-Hidroxilase/biossíntese , Vitamina D3 24-Hidroxilase/metabolismo
8.
FASEB J ; 28(2): 627-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24145719

RESUMO

Within T-cell-dependent germinal centers, p53 gene transcription is repressed by Bcl-6 and is thus less vulnerable to mutation. Malignant lymphomas within inflamed extranodal sites exhibit a relatively high incidence of p53 mutations. The latter might originate from normal B-cell clones manifesting activation-induced cytosine deaminase (AID) and up-regulated p53 following T-cell-independent (TI) stimulation. We here examine p53 gene transcription in such TI clones, with a focus on modulatory effects of prostaglandin E2 (PGE2), and evaluate progeny for p53 mutations. Resting IgM(+)IgD(+)CD27(-) B cells from human tonsils were labeled with CFSE and stimulated in vitro with complement-coated antigen surrogate, IL-4, and BAFF ± exogenous PGE2 (50 nM) or an analog specific for the EP2 PGE2 receptor. We use flow cytometry to measure p53 and AID protein within variably divided blasts, qRT-PCR of p53 mRNA from cultures with or without actinomycin D to monitor mRNA transcription/stability, and single-cell p53 RT-PCR/sequencing to assess progeny for p53 mutations. We report that EP2 signaling triggers increased p53 gene transcriptional activity in AID(+) cycling blasts (P<0.01). Progeny exhibit p53 mutations at a frequency (8.5 × 10(-4)) greater than the baseline error rate (<0.8 × 10(-4)). We conclude that, devoid of the repressive influences of Bcl-6, dividing B lymphoblasts in inflamed tissues should display heightened p53 transcription and increased risk of p53 mutagenesis.


Assuntos
Linfócitos B/citologia , Dinoprostona/farmacologia , Linfócitos T/citologia , Proteína Supressora de Tumor p53/genética , Linfócitos B/efeitos dos fármacos , Células Cultivadas , Humanos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos
9.
Exp Mol Pathol ; 96(3): 431-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24768585

RESUMO

Mammalian target of rapamycin (mTOR) has been reported to contribute to the development of HIV-associated nephropathy (HIVAN). We hypothesized that HIV may be activating renal tissue mTOR pathway through renin angiotensin system (RAS) via Angiotensin Receptor Type II receptor (AT2R). Renal tissues of Vpr transgenic and Tg26 (HIVAN) mice displayed enhanced phosphorylation of mTOR and p70S6K. Aliskiren, a renin inhibitor attenuated phosphorylation of both mTOR and p70S6K in renal tissues of HIVAN mice. Interestingly, Angiotensin Receptor Type I (AT1R) blockade did not modulate renal tissue phosphorylation of mTOR in HIVAN mice; on the other hand, AT2R blockade attenuated renal tissue phosphorylation of mTOR in HIVAN mice. In vitro studies, both renin and Ang II displayed enhanced mouse tubular cell (MTC) phosphorylation of p70S6K in a dose dependent manner. HIV/MTC also displayed enhanced phosphorylation of both mTOR and p70S6K; interestingly this effect of HIV was further enhanced by losartan (an AT1R blocker). On the other hand, AT2R blockade attenuated HIV-induced tubular cell phosphorylation of mTOR and p70S6K, whereas, AT2R agonist enhanced phosphorylation of mTOR and p70S6K. These findings indicate that HIV stimulates mTOR pathway in HIVAN through the activation of renin angiotensin system via AT2R.


Assuntos
Nefropatia Associada a AIDS/genética , Nefropatias/virologia , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Amidas/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 2 de Angiotensina II/metabolismo , Animais , Fumaratos/farmacologia , HIV , Nefropatias/veterinária , Losartan/farmacologia , Camundongos , Camundongos Transgênicos , Fosforilação , Receptor Tipo 2 de Angiotensina/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
10.
J Immunol ; 188(12): 6093-108, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611237

RESUMO

Resting mature human B cells undergo a dynamic process of clonal expansion, followed by clonal contraction, during an in vitro response to surrogate C3d-coated Ag and innate immune system cytokines, IL-4 and BAFF. In this study, we explore the mechanism for clonal contraction through following the time- and division-influenced expression of several pro- and anti-apoptotic proteins within CFSE-labeled cultures. Several findings, involving both human and mouse B cells, show that a mitochondria-dependent apoptotic pathway involving p53 contributes to the high activation-induced cell death (AICD) susceptibility of replicating blasts. Activated B cell clones exhibit elevated p53 protein and elevated mRNA/protein of proapoptotic molecules known to be under direct p53 transcriptional control, Bax, Bad, Puma, Bid, and procaspase 6, accompanied by reduced anti-apoptotic Bcl-2. Under these conditions, Bim levels were not increased. The finding that full-length Bid protein significantly declines in AICD-susceptible replicating blasts, whereas Bid mRNA does not, suggests that Bid is actively cleaved to short-lived, proapoptotic truncated Bid. AICD was diminished, albeit not eliminated, by p53 small interfering RNA transfection, genetic deletion of p53, or Bcl-2 overexpression. DNA damage is a likely trigger for p53-dependent AICD because susceptible lymphoblasts expressed significantly elevated levels of both phosphorylated ataxia telangiectasia mutated-Ser(1980) and phospho-H2AX-Ser(139). Deficiency in activation-induced cytosine deaminase diminishes but does not ablate murine B cell AICD, indicating that activation-induced cytosine deaminase-induced DNA damage is only in part responsible. Evidence for p53-influenced AICD during this route of T cell-independent clonal expansion raises the possibility that progeny bearing p53 mutations might undergo positive selection in peripherally inflamed tissues with elevated levels of IL-4 and BAFF.


Assuntos
Linfócitos B/imunologia , Imunidade Inata/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Linfócitos B/citologia , Proliferação de Células , Humanos , Interleucina-4/imunologia , Interleucina-4/metabolismo , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , RNA Interferente Pequeno , Receptores de Antígenos de Linfócitos B/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
11.
Clin Transl Oncol ; 26(6): 1300-1318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244129

RESUMO

In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Hematológicas/terapia , Edição de Genes/métodos , Linfócitos T/imunologia , Linfócitos T/transplante
12.
J Health Popul Nutr ; 43(1): 65, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745335

RESUMO

BACKGROUND: The outbreak of Coronavirus disease (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) has caused worldwide panic in the global population taking people's lives, creating fear, and affecting mother-child relationships. Many questions were raised on the dangers of being infected with COVID-19 for newborns and safety concerns during feeding by COVID-19-positive mothers. Moreover, questions and doubts about the safety of the administration of vaccinations for nursing mothers are still open. This review attempts to fill the existing literature gap by exploring concepts concerning COVID-19 and breastfeeding mothers, the safety of vaccinations, the beneficial effects of breastfeeding on both mother and child, important hygiene recommendations for SARS-CoV-2 infected mothers, and possible solutions to optimize breastfeeding and safety precautions amidst the fear of emergence of novel variants. METHODS: All relevant publications from Google Scholar, PubMed, Web of Science, and Scopus search engines from December 2019 to October 2022 related to SARS-CoV-2, breastfeeding, COVID-19, lactating guidelines, and vaccination were included using 'Breastfeeding AND vaccine AND SARS-CoV-2' as MESH TERMS. Apart from the literature review, existing maternity protocols followed in Northern UAE were gathered from lactation consultants practicing in the UAE. RESULTS: Out of 19,391 records generated, only 24 studies were analyzed and summarized in this exhaustive review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart. Previous studies suggest that breastmilk is predominantly the primary source of nutrition for neonates. Breast milk is a rich source of antibodies that help the baby to fight against infections including other benefits. Hygiene recommendations for suspected or confirmed COVID-19-infected mothers are required along with psychological and emotional support. CONCLUSIONS: The administration of vaccinations should be advised and encouraged to protect the mothers with antibodies and the neonates by the passive transmission of antibodies through breast milk. This is a significant reason for not stopping breastfeeding even in case of COVID-19 infection. With adherence to proper hygiene methods, breastfeeding is recommended to be continued as the benefits greatly outweigh the risks.


Assuntos
Aleitamento Materno , COVID-19 , Humanos , COVID-19/prevenção & controle , Feminino , Recém-Nascido , Emirados Árabes Unidos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , SARS-CoV-2 , Vacinação , Vacinas contra COVID-19/administração & dosagem , Gravidez , Mães/psicologia , Lactente
13.
Genes Dis ; 10(3): 1005-1018, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396515

RESUMO

Ovarian cancer is the second most fatal gynecological cancer. For the last decade or so significant use of non-circulating and circulating biomarkers has been highlighted. However, the study of such biomarkers at nanovesicle technology such as exosomes, proteomic and genomics studies could further contribute to better identification of anomalous protein and networks which could act as potential targets for biomarker and immunotherapy development. This review provides an overview of the circulating and non-circulating biomarkers with the aim of addressing the current challenges and potential biomarkers that could lead to early ovarian cancer diagnosis and better management. By means of this review we also lay a hypothesis that characterization of exosomal protein, nucleic acid content from body fluids (serum, plasma, urine, etc.) can decode the secret of disease and potentially improve diagnostic sensitivity which could further lead to more effective screening and early detection of the disease.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37389408

RESUMO

Hypertension is a major risk factor for heart attack, produce atherosclerosis (hardening of the arteries), congestive heart failure, stroke, kidney infection, blindness, end-stage renal infection, and cardiovascular diseases. Many mechanisms are involved in causing hypertension, i.e., via calcium channels, alpha and beta receptors, and the renin-angiotensin system (RAS). RAS has an important role in blood pressure control and is also involved in the metabolism of glucose, homeostasis, and balance of electrolytes in the body. The components of RAS that are involved in the regulation of blood pressure are angiotensinogen, Ang I (angiotensin I), Ang II (angiotensin II), ACE (angiotensin-converting enzyme), and ACE 2 (angiotensin-converting enzyme 2). These components provide for relevant therapeutic targets for the treatment of hypertension, and various drugs are commercially available that target individual components of RAS. Angiotensin receptor blockers (ARBs) and ACE inhibitors are the most popular among these drugs. ACE is chosen in this review as it makes an important target for blood pressure control because it converts Ang I into Ang II and also acts on the vasodilator, bradykinin, to degrade it into inactive peptides. This review highlights various aspects of blood pressure regulation in the body with a focus on ACE, drugs targeting the components involved in regulation, their associated side effects, and a need to shift to alternative therapy for putative hypertension treatment in the form of bioactive peptides from food.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Hipertensão , Humanos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Antagonistas de Receptores de Angiotensina , Hipertensão/tratamento farmacológico , Peptídeos , Angiotensina II
15.
Pediatr Neonatol ; 64(5): 518-527, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36868948

RESUMO

Typhoid fever is a serious concern precisely in developing nations. Still investigators are exploring a better conjugate partner for Vi-polysaccharide to develop a more effective vaccine for typhoid fever. Here, we cloned and expressed S. Typhi outer membrane protein A (OmpA). The conjugation of Vi-polysaccharide with OmpA was carried out by the carbodiimide (EDAC) method employing ADH as a linker. Total Ig and IgG generated against OmpA, and Vi polysaccharide was quantified by ELISA. Vi polysaccharide alone induced very low levels of Vi polysaccharide antibody. Vi-OmpA conjugate (Vi-conjugate) elicited a robust immune response compared to Vi polysaccharide alone and showed booster response. Further, IgG was only evoked by Vi-OmpA conjugate, not with Vi polysaccharide alone. OmpA antibody induction in both the Vi-OmpA conjugate and OmpA were similar level. Taken together, we show that OmpA as a carrier protein conjugated to Vi polysaccharide is immunogenic. We predict OmpA antibodies will contribute protection along with antibodies generated by Vi-polysaccharide. Past and current literature supports that OmpA is highly conserved protein not only among Salmonellae but entire Enterobacteriacea family with 96-100% identity.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Animais , Camundongos , Febre Tifoide/prevenção & controle , Salmonella typhi , Polissacarídeos Bacterianos , Anticorpos Antibacterianos , Imunoglobulina G , Imunidade , Vacinas Conjugadas
16.
Vaccines (Basel) ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006053

RESUMO

Significant progress has been achieved in the realm of therapeutic interventions for multiple myeloma (MM), leading to transformative shifts in its clinical management. While conventional modalities such as surgery, radiotherapy, and chemotherapy have improved the clinical outcomes, the overarching challenge of effecting a comprehensive cure for patients afflicted with relapsed and refractory MM (RRMM) endures. Notably, adoptive cellular therapy, especially chimeric antigen receptor T-cell (CAR-T) therapy, has exhibited efficacy in patients with refractory or resistant B-cell malignancies and is now also being tested in patients with MM. Within this context, the B-cell maturation antigen (BCMA) has emerged as a promising candidate for CAR-T-cell antigen targeting in MM. Alternative targets include SLAMF7, CD38, CD19, the signaling lymphocyte activation molecule CS1, NKG2D, and CD138. Numerous clinical studies have demonstrated the clinical efficacy of these CAR-T-cell therapies, although longitudinal follow-up reveals some degree of antigenic escape. The widespread implementation of CAR-T-cell therapy is encumbered by several barriers, including antigenic evasion, uneven intratumoral infiltration in solid cancers, cytokine release syndrome, neurotoxicity, logistical implementation, and financial burden. This article provides an overview of CAR-T-cell therapy in MM and the utilization of BCMA as the target antigen, as well as an overview of other potential target moieties.

17.
J Immunol ; 185(9): 5300-14, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20921530

RESUMO

Within inflammatory environments, B cells encountering foreign or self-Ag can develop tertiary lymphoid tissue expressing activation-induced cytosine deaminase (AID). Recently, this DNA-modifying enzyme was detected in nonlymphoid cells within several inflamed tissues and strongly implicated in malignant transformation. This study examines whether a cyclooxygenase 2 (COX-2) pathway, often linked to inflammation, influences AID expression in activated B lymphocytes. In this paper, we report that dividing human B cells responding to surrogate C3d-coated Ag, IL-4, and BAFF express AID, as well as COX-2. A progressive increase in AID with each division was paralleled by a division-related increase in a COX-2-linked enzyme, microsomal PGE(2) synthase-1, and the PGE(2)R, EP2. Cells with the greatest expression of AID expressed the highest levels of EP2. Although COX-2 inhibitors diminished both AID expression and IgG class switching, exogenous PGE(2) and butaprost, a selective EP2 agonist, augmented AID mRNA/protein and increased the numbers of IgG(+) progeny. Despite the latter, the proportion of IgG(+) cells within viable progeny generally declined with PGE(2) supplementation. This was not due to PGE(2)-promoted differentiation to plasma cells or to greater downstream switching. Rather, because phosphorylated ataxia telangiectasia mutated levels were increased in progeny of PGE(2)-supplemented cultures, it appears more likely that PGE(2) facilitates AID-dependent DNA double-strand breaks that block B cell cycle progression or promote activation-induced cell death, or both. Taken together, the results suggest that a PGE(2) feed-forward mechanism for augmenting COX-2 pathway proteins promotes progressively increased levels of AID mRNA, protein, and function.


Assuntos
Linfócitos B/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citidina Desaminase/biossíntese , Dinoprostona/metabolismo , Transdução de Sinais/imunologia , Linfócitos B/imunologia , Ciclo-Oxigenase 2/imunologia , Dinoprostona/imunologia , Humanos , Immunoblotting , Ativação Linfocitária/imunologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Cancer Genet ; 260-261: 57-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426211

RESUMO

DNMT1 (DNA-methyltransferase 1) is an enzyme which contributes to the process of normal embryonic development, and aberrant expression of DNMT1 leads to tumor/leukemia progression by inducing significant changes in DNA methylation and epigenetics. We found that DNMT1 mRNA transcript is elevated in Exo-PALL compared to Exo-HD. We also confirmed and showed heightened levels of DNMT1 mRNA transcript in Exo-CM of leukemia cell lines. Co-culture of Exo-PALL with target cells (leukemia B cells) showed transfer of exosomal DNMT1 mRNA transcript into the target cells, which may reprogram the biological nature of normal healthy cells and leukemia cells.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Exossomos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regulação para Cima , Linhagem Celular Tumoral , Criança , Técnicas de Cocultura , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos
19.
Cancers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808645

RESUMO

CAR-T cell therapy is not without some clinical adverse effects, namely cytokine storms, due to a massive release of cytokines when CAR-T cells multiply in the body. Our goal was to develop exosomes expressing CD19 CAR to treat CD19-positive B-cell malignancies, instead of using whole CD19 CAR-T cells, thereby reducing the clinical risk of uncontrolled cytokine storms. Exosomes are extracellular nanovesicles (30-150 nm), composed of lipids, proteins, and nucleic acids, that carry the fingerprint of their parent cells. Exosomes are a preferred delivery system in nano-immunotherapy. Here, HEK293T parent cells were transduced with CD19 CAR plasmids and cellular CD19 CAR expression was confirmed. Exosomes (Exo-CD19 CAR) were isolated from the conditioned medium of non-transduced (WT) and CD19 CAR plasmid transduced HEK293T cells. Consequently, CD19 B-lineage leukemia cell lines were co-cultured with Exo-CD19 CAR and cell death was measured. Our data show that Exo-CD19 CAR treatment induced cytotoxicity and elevated pro-apoptotic genes in CD19-positive leukemia B-cells without inducing cell death in CD19-negative cells. Overall, the novel CD19 CAR exosomes target the CD19 surface antigens of leukemic B-cells and can induce contact-dependent cytotoxicity.

20.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932883

RESUMO

Exosomes are cell-generated nano-vesicles found in most biological fluids. Major components of their cargo are lipids, proteins, RNA, DNA, and non-coding RNAs. The miRNAs carried within exosomes reveal real-time information regarding disease status in leukemia and other cancers, and therefore exosomes have been studied as novel biomarkers for cancer. We investigated the impact of exosomes on cell proliferation in pediatric acute lymphocytic leukemia (PALL) and its reversal by silencing of exo-miR-181a. We isolated exosomes from the serum of PALL patients (Exo-PALL) and conditioned medium of leukemic cell lines (Exo-CM). We found that Exo-PALL promotes cell proliferation in leukemic B cell lines by gene regulation. This exosome-induced cell proliferation is a precise event with the up-regulation of proliferative (PCNA, Ki-67) and pro-survival genes (MCL-1, and BCL2) and suppression of pro-apoptotic genes (BAD, BAX). Exo-PALL and Exo-CM both show over expression of miR-181a compared to healthy donor control exosomes (Exo-HD). Specific silencing of exosomal miR-181a using a miR-181a inhibitor confirms that miR-181a inhibitor treatment reverses Exo-PALL/Exo-CM-induced leukemic cell proliferation in vitro. Altogether, this study suggests that exosomal miR-181a inhibition can be a novel target for growth suppression in pediatric lymphatic leukemia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa