RESUMO
Understanding the regulatory mechanisms controlling storage lipid accumulation will inform strategies to enhance seed oil quality and quantity in crop plants. The WRINKLED1 transcription factor (WRI1 TF) is a central regulator of lipid biosynthesis. We characterized the genome-wide binding profile of soybean (Gm)WRI1 and show that the TF directly regulates genes encoding numerous enzymes and proteins in the fatty acid and triacylglycerol biosynthetic pathways. GmWRI1 binds primarily to regions downstream of target gene transcription start sites. We showed that GmWRI1-bound regions are enriched for the canonical WRI1 DNA binding element, the ACTIVATOR of Spomin::LUC1/WRI1 (AW) Box (CNTNGNNNNNNNCG), and another DNA motif, the CNC Box (CNCCNCC). Functional assays showed that both DNA elements mediate transcriptional activation by GmWRI1. We also show that GmWRI1 works in concert with other TFs to establish a regulatory state that promotes fatty acid and triacylglycerol biosynthesis. In particular, comparison of genes targeted directly by GmWRI1 and by GmLEC1, a central regulator of the maturation phase of seed development, reveals that the two TFs act in a positive feedback subcircuit to control fatty acid and triacylglycerol biosynthesis. Together, our results provide unique insights into the genetic circuitry in which GmWRI1 participates to regulate storage lipid accumulation during seed development.
Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Proteínas de Plantas , Sementes , Fatores de Transcrição , Glycine max/genética , Glycine max/metabolismo , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sítios de Ligação , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Metabolismo dos Lipídeos/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Genoma de PlantaRESUMO
An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well, strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in scarlet runner bean and common bean embryo proper regions. We uncovered a set of suspensor- and embryo proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. Chromatin immunoprecipitation sequencing (ChIP-Seq) experiments with scarlet runner bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.
Assuntos
Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimentoRESUMO
The LEAFY COTYLEDON1 (LEC1) transcription factor is a central regulator of seed development, because it controls diverse biological programs during seed development, such as embryo morphogenesis, photosynthesis, and seed maturation. To understand how LEC1 regulates different gene sets during development, we explored the possibility that LEC1 acts in combination with other transcription factors. We identified and compared genes that are directly transcriptionally regulated by ABA-RESPONSIVE ELEMENT BINDING PROTEIN3 (AREB3), BASIC LEUCINE ZIPPER67 (bZIP67), and ABA INSENSITIVE3 (ABI3) with those regulated by LEC1. We showed that LEC1 operates with specific sets of transcription factors to regulate different gene sets and, therefore, distinct developmental processes. Thus, LEC1 controls diverse processes through its combinatorial interactions with other transcription factors. DNA binding sites for the transcription factors are closely clustered in genomic regions upstream of target genes, defining cis-regulatory modules that are enriched for DNA sequence motifs that resemble sequences known to be bound by these transcription factors. Moreover, cis-regulatory modules for genes regulated by distinct transcription factor combinations are enriched for different sets of DNA motifs. Expression assays with embryo cells indicate that the enriched DNA motifs are functional cis elements that regulate transcription. Together, the results suggest that combinatorial interactions between LEC1 and other transcription factors are mediated by cis-regulatory modules containing clustered cis elements and by physical interactions that are documented to occur between the transcription factors.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro , Glycine max/embriologia , Glycine max/genética , Fatores de Transcrição/genéticaRESUMO
The precise mechanisms that control gene activity during seed development remain largely unknown. Previously, we showed that several genes essential for seed development, including those encoding storage proteins, fatty acid biosynthesis enzymes, and transcriptional regulators (e.g., ABI3, FUS3) are located within hypomethylated regions of the soybean genome. These hypomethylated regions are similar to the DNA methylation valleys (DMVs), or canyons, found in mammalian cells. Here, we address the question of the extent to which DMVs are present within seed genomes and what role they might play in seed development. We scanned soybean and Arabidopsis seed genomes from postfertilization through dormancy and germination for regions that contain <5% or <0.4% bulk methylation in CG, CHG, and CHH contexts over all developmental stages. We found that DMVs represent extensive portions of seed genomes, range in size from 5-76 kb, are scattered throughout all chromosomes, and are hypomethylated throughout the plant life cycle. Significantly, DMVs are enriched greatly in transcription factor (TF) genes and other developmental genes that play critical roles in seed formation. Many DMV genes are regulated with respect to seed stage, region, and tissue, and contain H3K4me3, H3K27me3, or bivalent marks that fluctuate during development. Our results indicate that DMVs are a unique regulatory feature of both plant and animal genomes, and that a large number of seed genes are regulated in the absence of methylation changes during development, probably by the action of specific TFs and epigenetic events at the chromatin level.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA/fisiologia , DNA de Plantas , Genoma de Planta/fisiologia , Glycine max , Sementes , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and lec1-null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the lec1 mutation. We used ChIP and differential gene-expression analyses in Arabidopsis seedlings overexpressing LEC1 and in developing Arabidopsis and soybean seeds to identify globally the target genes that are transcriptionally regulated by LEC1 in planta Collectively, our results show that LEC1 controls distinct gene sets at different developmental stages, including those that mediate the temporal transition between photosynthesis and chloroplast biogenesis early in seed development and seed maturation late in development. Analyses of enriched DNA sequence motifs that may act as cis-regulatory elements in the promoters of LEC1 target genes suggest that LEC1 may interact with other transcription factors to regulate distinct gene sets at different stages of seed development. Moreover, our results demonstrate strong conservation in the developmental processes and gene networks regulated by LEC1 in two dicotyledonous plants that diverged â¼92 Mya.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/metabolismo , Sementes/metabolismo , Transcrição Gênica/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Motivos de Nucleotídeos/fisiologia , Sementes/genética , Glycine max/genéticaRESUMO
We profiled soybean and Arabidopsis methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is maintained during endoreduplication, and drops precipitously within the germinating seedling. By contrast, no significant global changes in CG- and CHG-context methylation occur during the same developmental period. An Arabidopsis ddcc mutant lacking CHH and CHG methylation does not affect seed development, germination, or major patterns of gene expression, implying that CHH and CHG methylation does not play a significant role in seed development or in regulating seed gene activity. By contrast, over 100 TEs are transcriptionally de-repressed in ddcc seeds, suggesting that the increase in CHH-context methylation may be a failsafe mechanism to reinforce transposon silencing. Many genes encoding important classes of seed proteins, such as storage proteins, oil biosynthesis enzymes, and transcription factors, reside in genomic regions devoid of methylation at any stage of seed development. Many other genes in these classes have similar methylation patterns, whether the genes are active or repressed. Our results suggest that methylation does not play a significant role in regulating large numbers of genes important for programming seed development in both soybean and Arabidopsis. We conclude that understanding the mechanisms controlling seed development will require determining how cis-regulatory elements and their cognate transcription factors are organized in genetic regulatory networks.
Assuntos
Arabidopsis/genética , Metilação de DNA/fisiologia , DNA de Plantas/metabolismo , Glycine max/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sequência de Bases , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Inativação Gênica , Genes de Plantas/genética , Genoma de Planta/genética , Germinação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Sementes/citologiaRESUMO
Seed development is a complex period of the flowering plant life cycle. After fertilization, the three main regions of the seed, embryo, endosperm and seed coat, undergo a series of developmental processes that result in the production of a mature seed that is developmentally arrested, desiccated, and metabolically quiescent. These processes are highly coordinated, both temporally and spatially, to ensure the proper growth and development of the seed. The transcription factor, LEAFY COTYLEDON1 (LEC1), is a central regulator that controls several aspects of embryo and endosperm development, including embryo morphogenesis, photosynthesis, and storage reserve accumulation. Thus, LEC1 regulates distinct sets of genes at different stages of seed development. Despite its critical importance for seed development, an understanding of the mechanisms underlying LEC1's multifunctionality is only beginning to be obtained. Recent studies describe the roles of specific transcription factors and the hormones, gibberellic acid and abscisic acid, in controlling the activity and transcriptional specificity of LEC1 across seed development. Moreover, studies indicate that LEC1 acts as a pioneer transcription factor to promote epigenetic reprogramming during embryogenesis. In this review, we discuss the mechanisms that enable LEC1 to serve as a central regulator of seed development.
Assuntos
Proteínas de Arabidopsis/metabolismo , Sementes/metabolismo , Sementes/fisiologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Sementes/genética , Fatores de Transcrição/genéticaRESUMO
MicroRNAs (miRNAs) are important regulatory molecules in eukaryotic organisms. Existing methods for the identification of mature miRNA sequences in plants rely extensively on the search for stem-loop structures, leading to high false negative rates. Here, we describe a probabilistic method for ranking putative plant miRNAs using a naïve Bayes classifier and its publicly available implementation. We use a number of properties to construct the classifier, including sequence length, number of observations, existence of detectable predicted miRNA* sequences, the distribution of nearby reads and mapping multiplicity. We apply the method to small RNA sequence data from soybean, peach, Arabidopsis and rice and provide experimental validation of several predictions in soybean. The approach performs well overall and strongly enriches for known miRNAs over other types of sequences. By utilizing a Bayesian approach to rank putative miRNAs, our method is able to score miRNAs that would be eliminated by other methods, such as those that have low counts or lack detectable miRNA* sequences. As a result, we are able to detect several soybean miRNA candidates, including some that are 24 nucleotides long, a class that is almost universally eliminated by other methods.
Assuntos
Teorema de Bayes , Biologia Computacional/métodos , MicroRNAs/genética , RNA de Plantas/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/classificação , RNA de Plantas/classificaçãoRESUMO
The funiculus anchors the structurally complex seed to the maternal plant, and is the only direct route of transport for nutrients and maternal signals to the seed. While our understanding of seed development is becoming clearer, current understanding of the genetics and cellular mechanisms that contribute to funiculus development is limited. Using laser microdissection combined with global RNA-profiling experiments we compared the genetic profiles of all maternal and zygotic regions and subregions during seed development. We found that the funiculus is a dynamic region of the seed that is enriched for mRNAs associated with hormone metabolism, molecular transport, and metabolic activities corresponding to biological processes that have yet to be described in this maternal seed structure. We complemented our genetic data with a complete histological analysis of the funiculus from the earliest stages of development through to seed maturation at the light and electron microscopy levels. The anatomy revealed signs of photosynthesis, the endomembrane system, cellular respiration, and transport within the funiculus, all of which supported data from the transcriptional analysis. Finally, we studied the transcriptional programming of the funiculus compared to other seed subregions throughout seed development. Using newly designed in silico algorithms, we identified a number of transcriptional networks hypothesized to be responsible for biological processes like auxin response and glucosinolate biosynthesis found specifically within the funiculus. Taken together, patterns of gene activity and histological observations reveal putative functions of the understudied funiculus region and identify predictive transcriptional circuits underlying these biological processes in space and time.
Assuntos
Arabidopsis/genética , Sementes/genética , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glucosinolatos/metabolismo , Ácidos Indolacéticos/metabolismo , Microdissecção e Captura a Laser , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimentoRESUMO
Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types.
Assuntos
Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Proteínas de Homeodomínio/genética , Luz , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Meristema/anatomia & histologia , Meristema/genética , Meristema/fisiologia , Meristema/efeitos da radiação , Modelos Biológicos , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genéticaRESUMO
We used an RNA interference screen to assay the function of 53 transcription factor messenger RNAs (mRNAs) that accumulate specifically within soybean (Glycine max) seed regions, subregions, and tissues during development. We show that basic helix-loop-helix (bHLH) transcription factor genes represented by Glyma04g41710 and its paralogs are required for the formation of stoma in leaves and stomatal precursor complexes in mature embryo cotyledons. Phylogenetic analysis indicates that these bHLH transcription factor genes are orthologous to Arabidopsis (Arabidopsis thaliana) SPEECHLESS (SPCH) that initiate asymmetric cell divisions in the leaf protoderm layer and establish stomatal cell lineages. Soybean SPCH (GmSPCH) mRNAs accumulate primarily in embryo, seedling, and leaf epidermal layers. Expression of Glyma04g41710 under the control of the SPCH promoter rescues the Arabidopsis spch mutant, indicating that Glyma04g41710 is a functional ortholog of SPCH. Developing soybean embryos do not form mature stoma, and stomatal differentiation is arrested at the guard mother cell stage. We analyzed the accumulation of GmSPCH mRNAs during soybean seed development and mRNAs orthologous to MUTE, FAMA, and inducer of C-repeat/dehydration responsive element-binding factor expression1/scream2 that are required for stoma formation in Arabidopsis. The mRNA accumulation patterns provide a potential explanation for guard mother cell dormancy in soybean embryos. Our results suggest that variation in the timing of bHLH transcription factor gene expression can explain the diversity of stomatal forms observed during plant development.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula/genética , Regulação para Baixo/genética , Genes de Plantas , Glycine max/embriologia , Glycine max/genética , Estômatos de Plantas/citologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Homozigoto , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/embriologia , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/embriologia , Sementes/genéticaRESUMO
Seeds are complex structures that consist of the embryo, endosperm, and seed-coat regions that are of different ontogenetic origins, and each region can be further divided into morphologically distinct subregions. Despite the importance of seeds for food, fiber, and fuel globally, little is known of the cellular processes that characterize each subregion or how these processes are integrated to permit the coordinated development of the seed. We profiled gene activity genome-wide in every organ, tissue, and cell type of Arabidopsis seeds from fertilization through maturity. The resulting mRNA datasets offer the most comprehensive description of gene activity in seeds with high spatial and temporal resolution,providing unique insights into the function of understudied seed regions. Global comparisons of mRNA populations reveal unexpected overlaps in the functional identities of seed subregions. Analyses of coexpressed gene sets suggest that processes that regulate seed size and filling are coordinated across several subregions. Predictions of gene regulatory networks based on the association of transcription factors with enriched DNA sequence motifs upstream of coexpressed genes identify regulators of seed development. These studies emphasize the utility of these data sets as an essential resource for the study of seed biology.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sementes/genética , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Análise por Conglomerados , Endosperma/anatomia & histologia , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Genes de Plantas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimentoRESUMO
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.
Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , RNA Helicases DEAD-box/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA Ribossômico/metabolismo , Sementes/enzimologia , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Glucose/metabolismo , Modelos Biológicos , Mutagênese Insercional , Fenótipo , Plantas Geneticamente Modificadas , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de SinaisRESUMO
Imprinted genes are expressed primarily or exclusively from either the maternal or paternal allele, a phenomenon that occurs in flowering plants and mammals. Flowering plant imprinted gene expression has been described primarily in endosperm, a terminal nutritive tissue consumed by the embryo during seed development or after germination. Imprinted expression in Arabidopsis thaliana endosperm is orchestrated by differences in cytosine DNA methylation between the paternal and maternal genomes as well as by Polycomb group proteins. Currently, only 11 imprinted A. thaliana genes are known. Here, we use extensive sequencing of cDNA libraries to identify 9 paternally expressed and 34 maternally expressed imprinted genes in A. thaliana endosperm that are regulated by the DNA-demethylating glycosylase DEMETER, the DNA methyltransferase MET1, and/or the core Polycomb group protein FIE. These genes encode transcription factors, proteins involved in hormone signaling, components of the ubiquitin protein degradation pathway, regulators of histone and DNA methylation, and small RNA pathway proteins. We also identify maternally expressed genes that may be regulated by unknown mechanisms or deposited from maternal tissues. We did not detect any imprinted genes in the embryo. Our results show that imprinted gene expression is an extensive mechanistically complex phenomenon that likely affects multiple aspects of seed development.
Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Impressão Genômica , Arabidopsis/embriologia , Metilação de DNA , Genes de Plantas , Mutação , Óvulo Vegetal , Pólen , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismoRESUMO
Most of the transcription factors (TFs) responsible for controlling seed development are not yet known. To identify TF genes expressed at specific stages of seed development, including those unique to seeds, we used Affymetrix GeneChips to profile Arabidopsis genes active in seeds from fertilization through maturation and at other times of the plant life cycle. Seed gene sets were compared with those expressed in prefertilization ovules, germinating seedlings, and leaves, roots, stems, and floral buds of the mature plant. Most genes active in seeds are shared by all stages of seed development, although significant quantitative changes in gene activity occur. Each stage of seed development has a small gene set that is either specific at the level of the GeneChip or up-regulated with respect to genes active at other stages, including those that encode TFs. We identified 289 seed-specific genes, including 48 that encode TFs. Seven of the seed-specific TF genes are known regulators of seed development and include the LEAFY COTYLEDON (LEC) genes LEC1, LEC1-LIKE, LEC2, and FUS3. The rest represent different classes of TFs with unknown roles in seed development. Promoter-beta-glucuronidase (GUS) fusion experiments and seed mRNA localization GeneChip datasets showed that the seed-specific TF genes are active in different compartments and tissues of the seed at unique times of development. Collectively, these seed-specific TF genes should facilitate the identification of regulatory networks that are important for programming seed development.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , Sementes/genética , Sementes/crescimento & desenvolvimentoRESUMO
The seed maturation programme occurs only during the late phase of embryo development, and repression of the maturation genes is pivotal for seedling development. However, mechanisms that repress the expression of this programme in vegetative tissues are not well understood. A genetic screen was performed for mutants that express maturation genes in leaves. Here, it is shown that mutations affecting SDG8 (SET DOMAIN GROUP 8), a putative histone methyltransferase, cause ectopic expression of a subset of maturation genes in leaves. Further, to investigate the relationship between SDG8 and the Polycomb Group (PcG) proteins, which are known to repress many developmentally important genes including seed maturation genes, double mutants were made and formation of somatic embryos was observed on mutant seedlings with mutations in both SDG8 and EMF2 (EMBRYONIC FLOWER 2). Analysis of histone methylation status at the chromatin sites of a number of maturation loci revealed a synergistic effect of emf2 and sdg8 on the deposition of the active histone mark which is the trimethylation of Lys4 on histone 3 (H3K4me3). This is consistent with high expression of these genes and formation of somatic embryos in the emf2 sdg8 double mutants. Interestingly, a double mutant of sdg8 and vrn2 (vernalization2), a paralogue of EMF2, grew and developed normally to maturity. These observations demonstrate a functional cooperative interplay between SDG8 and an EMF2-containing PcG complex in maintaining vegetative cell identity by repressing seed genes to promote seedling development. The work also indicates the functional specificities of PcG complexes in Arabidopsis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Repressoras/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Histona-Lisina N-Metiltransferase/genética , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/genética , Plântula/genéticaRESUMO
Nuclear pore complexes (NPCs) are vital to nuclear-cytoplasmic communication in eukaryotes. The yeast NPC-associated TREX-2 complex, also known as the Thp1-Sac3-Cdc31-Sus1 complex, is anchored on the NPC via the nucleoporin Nup1, and is essential for mRNA export. Here we report the identification and characterization of the putative Arabidopsis thaliana TREX-2 complex and its anchoring nucleoporin. Physical and functional evidence support the identification of the Arabidopsis orthologs of yeast Thp1 and Nup1. Of three Arabidopsis homologs of yeast Sac3, two are putative TREX-2 components, but, surprisingly, none are required for mRNA export as they are in yeast. Physical association of the two Cdc31 homologs, but not the Sus1 homolog, with the TREX-2 complex was observed. In addition to identification of these TREX-2 components, direct interactions of the Arabidopsis homolog of DSS1, which is an established proteasome component in yeast and animals, with both the TREX-2 complex and the proteasome were observed. This suggests the possibility of a link between the two complexes. Thus this work has identified the putative Arabidopsis TREX-2 complex and provides a foundation for future studies of nuclear export in Arabidopsis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Filogenia , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
LEAFY COTYLEDON2 (LEC2) is a central regulator of embryogenesis sufficient to induce somatic cells to form embryos when expressed ectopically. Here, we analyze the cellular processes induced by LEC2, a B3 domain transcription factor, that may underlie its ability to promote somatic embryogenesis. We show auxin-responsive genes are induced after LEC2 activation in seedlings. Genes encoding enzymes involved in auxin biosynthesis, YUC2 and YUC4, are activated within 1 h after induction of LEC2 activity, and YUC4 appears to be a direct transcriptional target of LEC2. We also show ectopic LEC2 expression induces accumulation of seed storage protein and oil bodies in vegetative and reproductive organs, events that normally occur during the maturation phase of embryogenesis. Furthermore, LEC2 activates seed protein genes before an increase in RNAs encoding LEC1 or FUS3 is observed. Thus, LEC2 causes rapid changes in auxin responses and induces cellular differentiation characteristic of the maturation phase. The relevance of these changes to the ability of LEC2 to promote somatic embryogenesis is discussed.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis/embriologia , Imunoprecipitação da Cromatina , Primers do DNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo , Sementes/fisiologiaRESUMO
Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b-INTERACTING PROTEIN-LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)-enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
RESUMO
Two fundamental aspects of plant development are the maturation phase of embryo development in seed plants and totipotency via somatic embryogenesis (SE). The LEAFY COTYLEDON (LEC) transcription factors (TFs) establish environments that promote cellular processes characteristic of the maturation phase and the initiation of somatic embryo formation. Based on recent studies, we and others propose that specific target genes activated by the LEC TFs underlie, in part, their roles in the maturation phase and SE. We also propose that the effect of LEC TFs on the balance of abscisic acid to gibberellic acid might link their roles in totipotency and the maturation phase.