Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Physiol Rev ; 101(3): 739-795, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270534

RESUMO

Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.


Assuntos
Doenças Metabólicas/etiologia , Obesidade/etiologia , Placenta/metabolismo , Feminino , Humanos , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Gravidez
2.
Proc Natl Acad Sci U S A ; 119(27): e2200109119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763573

RESUMO

Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO2 from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.


Assuntos
Partículas e Gotas Aerossolizadas , COVID-19 , SARS-CoV-2 , Partículas e Gotas Aerossolizadas/química , Partículas e Gotas Aerossolizadas/isolamento & purificação , COVID-19/transmissão , Humanos , Umidade , Concentração de Íons de Hidrogênio , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
3.
Neurobiol Dis ; : 106588, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960101

RESUMO

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.

4.
Mol Psychiatry ; 28(10): 4234-4250, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525013

RESUMO

With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.


Assuntos
Disfunção Cognitiva , Lipidômica , Masculino , Feminino , Gravidez , Humanos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612464

RESUMO

Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.


Assuntos
Placenta , Sêmen , Masculino , Feminino , Gravidez , Suínos , Animais , Camundongos , DNA Complementar , Espermatozoides , Eutérios , Alanina , Isoantígenos/genética , Fertilização/genética
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768233

RESUMO

Correlating gene expression patterns with biomechanical properties of connective tissues provides insights into the molecular processes underlying the tissue growth and repair. Cadaveric specimens such as human knees are widely considered suitable for biomechanical studies, but their usefulness for gene expression experiments is potentially limited by the unavoidable, nuclease-mediated degradation of RNA. Here, we tested whether valid gene expression profiles can be obtained using degraded RNA from human anterior cruciate ligaments (ACLs). Human ACL RNA (N = 6) degraded in vitro by limited ribonuclease digestion resemble highly degraded RNA isolated from cadaveric tissue. PCR threshold cycle (Ct) values for 90 transcripts (84 extracellular matrix, 6 housekeeping) in degraded RNAs variably ranged higher than values obtained from their corresponding non-degraded RNAs, reflecting both the expected loss of target templates in the degraded preparations as well as differences in the extent of degradation. Relative Ct values obtained for mRNAs in degraded preparations strongly correlated with the corresponding levels in non-degraded RNA, both for each ACL as well as for the pooled results from all six ACLs. Nuclease-mediated degradation produced similar, strongly correlated losses of housekeeping and non-housekeeping gene mRNAs. RNA degraded in situ yielded comparable results, confirming that in vitro digestion effectively modeled degradation by endogenous ribonucleases in frozen and thawed ACL. We conclude that, contrary to conventional wisdom, PCR-based expression analyses can yield valid mRNA profiles even from RNA preparations that are more than 90% degraded, such as those obtained from connective tissues subjected to biomechanical studies. Furthermore, legitimate quantitative comparisons between variably degraded tissues can be made by normalizing data to appropriate housekeeping transcripts.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Articulação do Joelho , Transcriptoma , RNA/genética , Cadáver , Fenômenos Biomecânicos
7.
Pediatr Res ; 91(5): 1078-1089, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34230622

RESUMO

BACKGROUND: Intrauterine growth restriction and low birth weight (LBW) have been widely reported as an independent risk factor for adult hypercholesterolaemia and increased hepatic cholesterol in a sex-specific manner. However, the specific impact of uteroplacental insufficiency (UPI), a leading cause of LBW in developed world, on hepatic cholesterol metabolism in later life, is ill defined and is clinically relevant in understanding later life liver metabolic health trajectories. METHODS: Hepatic cholesterol, transcriptome, cholesterol homoeostasis regulatory proteins, and antioxidant markers were studied in UPI-induced LBW and normal birth weight (NBW) male and female guinea pigs at 150 days. RESULTS: Hepatic free and total cholesterol were increased in LBW versus NBW males. Transcriptome analysis of LBW versus NBW livers revealed that "cholesterol metabolism" was an enriched pathway in LBW males but not in females. Microsomal triglyceride transfer protein and cytochrome P450 7A1 protein, involved in hepatic cholesterol efflux and catabolism, respectively, and catalase activity were decreased in LBW male livers. Superoxide dismutase activity was reduced in LBW males but increased in LBW females. CONCLUSIONS: UPI environment is associated with a later life programed hepatic cholesterol accumulation via impaired cholesterol elimination in a sex-specific manner. These programmed alterations could underlie later life cholesterol-induced hepatic lipotoxicity in LBW male offspring. IMPACT: Low birth weight (LBW) is a risk factor for increased hepatic cholesterol. Uteroplacental insufficiency (UPI) resulting in LBW increased hepatic cholesterol content, altered hepatic expression of cholesterol metabolism-related genes in young adult guinea pigs. UPI-induced LBW was also associated with markers of a compromised hepatic cholesterol elimination process and failing antioxidant system in young adult guinea pigs. These changes, at the current age studied, were sex-specific, only being observed in LBW males and not in LBW females. These programmed alterations could lead to further hepatic damage and greater predisposition to liver diseases in UPI-induced LBW male offspring as they age.


Assuntos
Antioxidantes , Hepatopatias , Animais , Peso ao Nascer , Colesterol , Sistema Enzimático do Citocromo P-450 , Feminino , Cobaias , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Masculino
8.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887347

RESUMO

As cannabis use during pregnancy increases, it is important to understand its effects on the developing fetus. Particularly, the long-term effects of its psychoactive component, delta-9-tetrahydrocannabinol (THC), on the offspring's reproductive health are not fully understood. This study examined the impact of gestational THC exposure on the miRNA profile in adult rat ovaries and the possible consequences on ovarian health. Prenatal THC exposure resulted in the differential expression of 12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-122-5p, which is highly conserved among species, was the only upregulated target and had the greatest fold change. The upregulation of miR-122-5p and the downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-positive follicular cells and increased follicular apoptosis. Furthermore, THC decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As decreased IGF-1R has been associated with diminished ovarian health and fertility, we propose that these THC-induced changes may partially explain the altered ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our data suggests that prenatal THC exposure may impact key pathways in the developing ovary, which could lead to subfertility or premature reproductive senescence.


Assuntos
Alucinógenos , MicroRNAs , Efeitos Tardios da Exposição Pré-Natal , Animais , Dronabinol/farmacologia , Feminino , Humanos , MicroRNAs/genética , Ovário , Gravidez , Ratos , Receptor IGF Tipo 1/genética
9.
Pediatr Res ; 90(3): 532-539, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33879850

RESUMO

BACKGROUND: Cannabis use in pregnancy leads to fetal growth restriction (FGR), but the long-term effects on cardiac function in the offspring are unknown, despite the fact that fetal growth deficits are associated with an increased risk of developing postnatal cardiovascular disease. We hypothesize that maternal exposure to Δ9-tetrahydrocannabinol (Δ9-THC) during pregnancy will impair fetal development, leading to cardiac dysfunction in the offspring. METHODS: Pregnant Wistar rats were randomly selected and administered 3 mg/kg of Δ9-THC or saline as a vehicle daily via intraperitoneal injection from gestational days 6 to 22, followed by echocardiogram analysis of cardiac function on offspring at postnatal days 1 and 21. Heart tissue was harvested from the offspring at 3 weeks for molecular analysis of cardiac remodelling. RESULTS: Exposure to Δ9-THC during pregnancy led to FGR with a significant decrease in heart-to-body weight ratios at birth. By 3 weeks, pups exhibited catch-up growth associated with significantly greater left ventricle anterior wall thickness with a decrease in cardiac output. Moreover, these Δ9-THC-exposed offsprings exhibited increased expression of collagen I and III, decreased matrix metallopeptidase-2 expression, and increased inactivation of glycogen synthase kinase-3ß, all associated with cardiac remodelling. CONCLUSIONS: Collectively, these data suggest that Δ9-THC-exposed FGR offspring undergo postnatal catch-up growth concomitant with cardiac remodelling and impaired cardiac function early in life. IMPACT: To date, the long-term effects of perinatal Δ9-THC (the main psychoactive component) exposure on the cardiac function in the offspring remain unknown. We demonstrated, for the first time, that exposure to Δ9-THC alone during rat pregnancy results in significantly smaller hearts relative to body weight. These Δ9-THC-exposed offsprings exhibited postnatal catch-up growth concomitant with cardiac remodelling and impaired cardiac function. Given the increased popularity of cannabis use in pregnancy along with rising Δ9-THC concentrations, this study, for the first time, identifies the risk of perinatal Δ9-THC exposure on early postnatal cardiovascular health.


Assuntos
Dronabinol/farmacologia , Coração/efeitos dos fármacos , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso ao Nascer , Feminino , Gravidez , Ratos , Ratos Wistar
10.
Alcohol Clin Exp Res ; 45(7): 1383-1397, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960427

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) can result in developmental defects that include growth restriction, craniofacial anomalies, and cognitive behavioral deficits, though the presence and severity of these adverse outcomes can vary dramatically among exposed individuals. Preclinical animal models have demonstrated that the dose and timing of PAE account for much, but not all, of this phenotypic variation, suggesting that additional factors mitigate the effects of PAE. Here, we used a mouse model to investigate whether maternal age modulates the effects of PAE on the severity and variation in offspring growth and craniofacial outcomes. METHODS: Nulliparous C57BL/6N dams received either an intraperitoneal injection of ethanol (EtOH) or vehicle solution on gestational day 7.5. Dams were divided into four groups: (1) EtOH-treated young dams (6 to 10 weeks); (2) control young dams; (3) EtOH-treated old dams (6 to 7 months); and (4) old control dams. Neonate offspring growth restriction was measured through body mass and organ-to-body mass ratios, while skeletal craniofacial features were imaged using micro-CT and analyzed for size, shape, and variation. RESULTS: PAE and advanced maternal age each increased the risk of low birthweight and growth restriction in offspring, but these factors in combination changed the nature of the growth restriction. Similarly, both PAE and advanced maternal age individually caused changes to craniofacial morphology such as smaller skull size, dysmorphic skull shape, and greater skull shape variation and asymmetry. Interestingly, while the combination of PAE and advanced maternal age did not affect mean skull shape or size, it significantly increased the variation and asymmetry of those measures. CONCLUSION: Our results indicate that maternal age modulates the effects of PAE, but that the effects of this combination on offspring outcomes are more complex than simply scaling the effects of either factor.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Etanol/administração & dosagem , Etanol/efeitos adversos , Ossos Faciais/patologia , Idade Materna , Crânio/patologia , Animais , Peso ao Nascer/efeitos dos fármacos , Índice de Massa Corporal , Anormalidades Craniofaciais/induzido quimicamente , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal
11.
Can J Physiol Pharmacol ; 99(5): 556-560, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32916058

RESUMO

Fetal growth restriction can affect health outcomes in postnatal life. This study tested the hypothesis that the response to an inflammatory pulmonary insult is altered in pediatric fetal growth restricted rats. Using a low-protein diet during gestation and postnatal life, growth-restricted male and female rats and healthy control rats were exposed to an inflammatory insult via the intratracheal instillation of heat-killed bacteria. After 6 h, animal lungs were examined for lung inflammation and status of the surfactant system. The results showed that in response to an inflammatory insult, neutrophil infiltration was decreased in both male and female rats in the growth-restricted animals compared with the control rats. The amount of surfactant was increased in the growth-restricted animals compared with the control rats, regardless of the inflammatory insult. It is concluded that fetal growth restriction results in increased surfactant and altered neutrophil responses following pulmonary insult.


Assuntos
Dieta com Restrição de Proteínas , Pulmão , Animais , Feminino , Retardo do Crescimento Fetal , Gravidez , Ratos
12.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502436

RESUMO

Up to 20% of pregnant women ages 18-24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease in the offspring. This is of great concern considering that the concentration of Δ9- tetrahydrocannabinol (Δ9-THC), a major psychoactive component of cannabis, has doubled over the last decade and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical findings on the direct effects of exposure to cannabis and its constituents on fetal development as well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases.


Assuntos
Agonistas de Receptores de Canabinoides/efeitos adversos , Dronabinol/efeitos adversos , Retardo do Crescimento Fetal/induzido quimicamente , Placenta/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Doenças Metabólicas/induzido quimicamente , Gravidez
13.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209700

RESUMO

Disruption of the in utero environment can have dire consequences on fetal growth and development. Intrauterine growth restriction (IUGR) is a pathological condition by which the fetus deviates from its expected growth trajectory, resulting in low birth weight and impaired organ function. The developmental origins of health and disease (DOHaD) postulates that IUGR has lifelong consequences on offspring well-being, as human studies have established an inverse relationship between birth weight and long-term metabolic health. While these trends are apparent in epidemiological data, animal studies have been essential in defining the molecular mechanisms that contribute to this relationship. One such mechanism is cellular stress, a prominent underlying cause of the metabolic syndrome. As such, this review considers the role of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation in the pathogenesis of metabolic disease in IUGR offspring. In addition, we summarize how uncontrolled cellular stress can lead to programmed cell death within the metabolic organs of IUGR offspring.


Assuntos
Suscetibilidade a Doenças , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Estresse Fisiológico , Animais , Apoptose , Biomarcadores , Estresse do Retículo Endoplasmático , Retardo do Crescimento Fetal/diagnóstico , Humanos , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/metabolismo , Síndrome Metabólica/diagnóstico , Modelos Biológicos , Fosforilação Oxidativa , Estresse Oxidativo , Resposta a Proteínas não Dobradas
14.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299119

RESUMO

The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to Δ9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, Δ9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9-THC-exposed offspring. Collectively, these findings indicate that prenatal Δ9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms.


Assuntos
Dronabinol/toxicidade , Dislipidemias/patologia , Alucinógenos/toxicidade , Lipogênese , Fígado/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Dislipidemias/induzido quimicamente , Feminino , Fígado/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar
15.
Reproduction ; 159(1): 27-39, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689235

RESUMO

Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet throughout gestation. Offspring born to control dams received a control diet in postnatal life, while MPR offspring remained on a LP diet (LP1) or received a control diet post weaning (LP2) or at birth (LP3). At four months, LP2 offspring exhibited increased protein abundance of both p66Shc and the cis-trans isomerase PIN1. This was further associated with aberrant markers of oxidative stress (i.e. elevated 4-HNE, SOD1 and SOD2, decreased catalase) and aerobic metabolism (i.e., increased phospho-PDH and LDHa, decreased complex II, citrate synthase and TFAM). We further demonstrated that tunicamycin-induced ER stress in HepG2 cells led to increased p66Shc protein abundance, suggesting that ER stress may underlie the programmed effects observed in vivo. In summary, because these defects are exclusive to adult LP2 offspring, it is possible that a low protein diet during perinatal life, a period of liver plasticity, followed by catch-up growth is detrimental to long-term mitochondrial function.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Estresse do Retículo Endoplasmático , Fígado/patologia , Mitocôndrias/patologia , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal/patologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Peso ao Nascer , Feminino , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
16.
Langmuir ; 36(42): 12481-12493, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32975425

RESUMO

Industrial processes such as spray drying of pharmaceutical and food products often involve the drying of aerosol droplets containing colloidal suspensions into powdered microparticles of desired properties. The morphology and surface properties of the final dry products/microparticles obtained after the drying process are strongly influenced by the parameters of the initial aerosol droplet composition and the drying conditions. In particular, the final dry microparticle morphology can be dependent on the dimensionless Péclet number (Pe), which expresses the relative competition between the diffusion of the dispersed particles within the droplet and the rate of solvent loss via evaporation. In this work, we examine how control over the gas phase drying conditions and initial aerosol droplet composition can be used to influence the aerosol droplet drying kinetics in the gas phase for a range of Péclet numbers. We used a single-particle levitation instrument, the electrodynamic balance, to measure the drying kinetics of colloidal silica droplets (0.10-0.60% v/v) under controlled gas phase drying conditions of temperature (263-326 K) and relative humidity (0-90%) and obtained Péclet numbers ranging from 4.05 to 184.5. We demonstrate that, for aerosol droplets with initially dilute feed colloid concentrations and within the constant evaporation regime, the starting composition does not strongly influence the solvent evaporation rate with the included nanoparticles (NPs) acting as spectators. However, the gas phase drying conditions, temperature, and relative humidity, directly influence the droplet temperature via evaporative cooling as well as the droplet drying kinetics and the final dry microparticle properties. With a priori knowledge of the droplet drying kinetics from the single droplet measurements, we further demonstrate the possibility of tailoring the morphology of the dried microparticles. Dried silica microparticles collected at Pe = 23.8 had dense spherical morphologies, while those at the highest Pe = 180.0 had crumpled surface morphologies with a transition in morphology between these limiting Pe values. Our results extend the fundamental understanding of the mechanisms controlling the drying of aerosol droplets in colloidal suspensions across a wide range of application areas extending from spray drying to the drying of respiratory fluid droplets containing bacteria and viruses and the drying of atmospheric aerosol droplets.

17.
Pediatr Res ; 85(1): 105-112, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420709

RESUMO

BACKGROUND: We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts cell death in the brain with implications for neurodevelopmental adversity. METHODS: Guinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Fetuses were necropsied near term and brain tissues processed for necrosis (H&E), apoptosis (TUNEL), and pro- (Bax) and anti- (Bcl-2 and Grp78) apoptotic protein immunoreactivity. RESULTS: FGR-MNR fetal and brain weights were decreased 38% and 12%, respectively, indicating brain sparing but with brains still smaller. While necrosis remained unchanged, apoptosis was increased in the white matter and hippocampus in the FGR brains, and control and FGR-related apoptosis were increased in males for most brain areas. Bax was increased in the CA4 and Bcl-2 was decreased in the dentate gyrus in the FGR brains supporting a role in the increased apoptosis, while Grp78 was increased in the FGR females, possibly contributing to the sex-related differences. CONCLUSIONS: MNR-induced FGR results in increased brain apoptosis with regional and sex-related differences that may contribute to the reduction in brain area size reported clinically and increased risk in FGR males for later neurodevelopmental adversity.


Assuntos
Apoptose , Encéfalo/patologia , Restrição Calórica , Retardo do Crescimento Fetal/etiologia , Desnutrição/complicações , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Cobaias , Proteínas de Choque Térmico/metabolismo , Masculino , Desnutrição/fisiopatologia , Gravidez , Fatores Sexuais , Proteína X Associada a bcl-2/metabolismo
18.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635173

RESUMO

Longitudinal bone growth occurs through endochondral ossification (EO), controlled by various signaling molecules. Retinoid X Receptor (RXR) is a nuclear receptor with important roles in cell death, development, and metabolism. However, little is known about its role in EO. In this study, the agonist SR11237 was used to evaluate RXR activation in EO. Rats given SR11237 from post-natal day 5 to post-natal day 15 were harvested for micro-computed tomography (microCT) scanning and histology. In parallel, newborn CD1 mouse tibiae were cultured with increasing concentrations of SR11237 for histological and whole-mount evaluation. RXR agonist-treated rats had shorter long bones than the controls and developed dysmorphia of the growth plate. Cells invading the calcified and dysmorphic growth plate appeared pre-hypertrophic in size and shape, in correspondence with p57 immunostaining. Additionally, SOX9-positive cells were found surrounding the calcified tissue. The epiphysis of SR11237-treated bones showed increased TRAP staining and additional TUNEL staining at the osteo-chondral junction. MicroCT revealed morphological disorganization in the long bones of the treated animals. This study suggests that stimulation of RXR causes irregular ossification, premature closure of the growth plate, and disrupted long bone growth in rodent models.


Assuntos
Benzoatos/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Retinoides/farmacologia , Animais , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
19.
J Appl Toxicol ; 37(12): 1507-1516, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28677866

RESUMO

Up to 10% of women take selective serotonin reuptake inhibitors (SSRI) during pregnancy. Children exposed to SSRIs in utero have an increased risk of being overweight suggesting that fetal exposure to SSRIs can cause permanent metabolic changes. We have previously shown in rats that fetal and neonatal exposure to the SSRI antidepressant fluoxetine results in metabolic perturbations including increased hepatic triglyceride content; a hallmark of non-alcoholic fatty liver disease (NAFLD). Therefore, the aim of this study was to identify the mechanism(s) underlying the fluoxetine-induced increase in intrahepatic triglyceride content. Female nulliparous Wistar rats were given vehicle or fluoxetine (10 mg/kg/day) orally for 2 weeks prior to mating until weaning. At 6 months of age, we assessed whether SSRI exposure altered components of the hepatic triglyceride biosynthesis pathway in the offspring and examined the molecular mechanisms underlying these changes. Male SSRI-exposed offspring had a significant increase in the steady-state mRNA levels of Elovl6 and Dgat1 and core components of the NLRP3 inflammasome (apoptosis-associated speck-like protein containing a caspase activation recruitment domain [ASC] and caspase-1). Augmented expression of Asc in the SSRI-exposed offspring coincided with increased histone acetylation in the proximal promoter region. Given that we have previously demonstrated that antenatal exposure to SSRIs can lead to fatty liver in the offspring, this raises concerns regarding the long-term metabolic sequelae of fetal SSRI exposure. Moreover, this study suggests that elevated hepatic triglyceride levels observed in the SSRI-exposed offspring may be due, in part, to activation of the NLRP3 inflammasome and augmentation of de novo lipogenesis.


Assuntos
Fluoxetina/toxicidade , Lipogênese/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Animais , Animais Recém-Nascidos , Epigênese Genética/efeitos dos fármacos , Feminino , Incidência , Inflamassomos/genética , Lipogênese/genética , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hepatopatia Gordurosa não Alcoólica/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos
20.
J Appl Toxicol ; 37(12): 1517-1526, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28681937

RESUMO

Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer-term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine-exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase-2 levels were reduced by 32% in these offspring concomitant with a 26-49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase-4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function.


Assuntos
Exposição Materna/efeitos adversos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/enzimologia , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Proteínas Mitocondriais/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa