Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 33(10): 3158-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173400

RESUMO

Autologous bone grafts (ABGs) are considered as the gold standard for spinal fusion. However, osteoporotic patients are poor candidates for ABGs due to limited osteogenic stem cell numbers and function of the bone microenvironment. There is a need for stem cell-based spinal fusion of proven efficacy under either osteoporotic or nonosteoporotic conditions. The purpose of this study is to determine the efficacy of human perivascular stem cells (hPSCs), a population of mesenchymal stem cells isolated from adipose tissue, in the presence and absence of NELL-1, an osteogenic protein, for spinal fusion in the osteoporosis. Osteogenic differentiation of hPSCs with and without NELL-1 was tested in vitro. The results indicated that NELL-1 significantly increased the osteogenic potential of hPSCs in both osteoporotic and nonosteoporotic donors. Next, spinal fusion was performed by implanting scaffolds with regular or high doses of hPSCs, with or without NELL-1 in ovariectomized rats (n = 41). Regular doses of hPSCs or NELL-1 achieved the fusion rates of only 20%-37.5% by manual palpation. These regular doses had previously been shown to be effective in nonosteoporotic rat spinal fusion. Remarkably, the high dose of hPSCs+NELL-1 significantly improved the fusion rates among osteoporotic rats up to approximately 83.3%. Microcomputed tomography imaging and quantification further confirmed solid bony fusion with high dose hPSCs+NELL-1. Finally, histologically, direct in situ involvement of hPSCs in ossification was shown using undecalcified samples. To conclude, hPSCs combined with NELL-1 synergistically enhances spinal fusion in osteoporotic rats and has great potential as a novel therapeutic strategy for osteoporotic patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/genética , Osteoporose/terapia , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Humanos , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Ratos , Fusão Vertebral/métodos
2.
Stem Cells Transl Med ; 12(7): 474-484, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261440

RESUMO

Innate mesenchymal stem cells exhibiting multilineage differentiation and tissue (re)generative-or pathogenic-properties reside in perivascular niches. Subsets of these progenitors are committed to either osteo-, adipo-, or fibrogenesis, suggesting the existence of a developmental organization in blood vessel walls. We evaluated herein the activity of aldehyde dehydrogenase, a family of enzymes catalyzing the oxidation of aldehydes into carboxylic acids and a reported biomarker of normal and malignant stem cells, within human adipose tissue perivascular areas. A progression of ALDHLow to ALDHHigh CD34+ cells was identified in the tunica adventitia. Mesenchymal stem cell potential was confined to ALDHHigh cells, as assessed by proliferation and multilineage differentiation in vitro of cells sorted by flow cytometry with a fluorescent ALDH substrate. RNA sequencing confirmed and validated that ALDHHigh cells have a progenitor cell phenotype and provided evidence that the main isoform in this fraction is ALDH1A1, which was confirmed by immunohistochemistry. This demonstrates that ALDH activity, which marks hematopoietic progenitors and stem cells in diverse malignant tumors, also typifies native, blood vessel resident mesenchymal stem cells.


Assuntos
Aldeído Desidrogenase , Células-Tronco Mesenquimais , Humanos , Células-Tronco , Diferenciação Celular , Citometria de Fluxo
3.
Stem Cell Reports ; 10(2): 436-446, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29307583

RESUMO

Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSCs), the capacity of such cells to support hematopoiesis has not been reported. Here, we demonstrate that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, and PDGFRß), a subset of cells defined as CD146hiCD73hi expressed genes associated with the HSPC niche and supported the maintenance of functional HSPCs ex vivo, while CD146loCD73lo cells supported differentiation. Stromal support of HSPCs was contact dependent and mediated in part through high JAG1 expression and low WNT signaling. Molecular profiling revealed significant transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of functionally diverse types of mesenchyme from hPSCs opens potential avenues to model the HSPC niche and develop PSC-based therapies.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Mesoderma/citologia , Células-Tronco Pluripotentes/citologia , Antígeno CD146/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo , Nicho de Células-Tronco/genética , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa