Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 164(7): 969-981, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877790

RESUMO

The methionine salvage pathway (MSP) is critical for regeneration of S-adenosyl-l-methionine (SAM), a widely used cofactor involved in many essential metabolic reactions. The MSP has been completely elucidated in aerobic organisms, and found to rely on molecular oxygen. Since anaerobic organisms do not use O2, an alternative pathway(s) must be operating. We sought to evaluate whether the functions of two annotated MSP enzymes from Methanocaldococcus jannaschii, a methylthioinosine phosphorylase (MTIP) and a methylthioribose 1-phosphate isomerase (MTRI), are consistent with functioning in a modified anaerobic MSP (AnMSP). We show here that recombinant MTIP is active with six different purine nucleosides, consistent with its function as a general purine nucleoside phosphorylase for both AnMSP and purine salvage. Recombinant MTRI is active with both 5-methylthioribose 1-phosphate and 5-deoxyribose 1-phosphate as substrates, which are generated from phosphororolysis of 5'-methylthioinosine and 5'-deoxyinosine by MTIP, respectively. Together, these data suggest that MTIP and MTRI may function in a novel pathway for recycling the 5'-deoxyadenosine moiety of SAM in M. jannaschii. These enzymes may also enable biosynthesis of 6-deoxy-5-ketofructose 1-phosphate (DKFP), an essential intermediate in aromatic amino acid biosynthesis. Finally, we utilized a homocysteine auxotrophic strain of Methanosarcina acetivorans Δma1821-22Δoahs (HcyAux) to identify potential AnMSP intermediates in vivo. Growth recovery experiments of the M. acetivorans HcyAux were performed with known and proposed intermediates for the AnMSP. Only one metabolite, 2-keto-(4-methylthio)butyric acid, rescued growth of M. acetivorans HcyAux in the absence of homocysteine. This observation may indicate that AnMSP pathways substantially differ among methanogens from phylogenetically divergent genera.


Assuntos
Vias Biossintéticas , Methanocaldococcus/metabolismo , Metionina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Desoxiadenosinas/metabolismo , Frutosefosfatos/biossíntese , Expressão Gênica , Teste de Complementação Genética , Cinética , Methanocaldococcus/enzimologia , Methanocaldococcus/genética , Methanosarcina/genética , Methanosarcina/metabolismo , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade da Espécie , Especificidade por Substrato
2.
Biochemistry ; 53(39): 6220-30, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25211225

RESUMO

Methanofuran is the first in a series of coenzymes involved in the reduction of carbon dioxide to methane. All methanofuran structural variants contain a basic core structure of 4-[N-(γ-l-glutamyl-γ-l-glutamyl)-p-(ß-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan (APMF-(Glu)2) with different attached side chains depending on the source organism. Recently, we discovered the biosynthetic route for the production of 5-(aminomethyl)-3-furanmethanol-phosphate (F1-P), a precursor to the furan moiety of methanofuran. However, how the γ-linked glutamates are incorporated into methanofuran's structure remains unknown. Here, we report the identification of an ATP-grasp enzyme encoded by the gene Mefer_1180 in Methanocaldococcus fervens (the homologue of MJ0815 in Methanocaldococcus jannaschii, annotated as MfnD) that catalyzes the ATP-dependent addition of one glutamate to tyramine via a γ-linked amide bond. The occurrence of this reaction is consistent with the presence of γ-glutamyltyramine in cell extracts of M. jannaschii. Our steady-state kinetic analysis of the recombinant enzyme showed that MfnD exhibits a catalytic ability comparable to other ATP-grasp enzymes such as the Escherichia coli glutathione synthetase (GS), with a similar apparent kcat and KM. In addition, its activity is divalent metal-dependent, with the highest activity observed with Mn(2+). The previously solved crystal structure of MfnD from Archaeoglobus fulgidus exhibits a classical ATP-grasp fold with three structural domains; the ATP-binding and metal-binding motifs are conserved in MfnD as seen in other ATP-grasp enzymes. We used site-directed mutagenesis and kinetic analysis to demonstrate that Arg251 is an important residue for both catalysis and glutamate binding. By comparing the active site of MfnD with GS and by molecular docking substrates to the MfnD active site, we predicted the possible glutamate- and tyramine-binding pocket. This is the first report describing the enzymology of the incorporation of the initial l-glutamate molecule into the methanofuran structure. It also provides the first example of an ATP-grasp enzyme activating the γ-carboxylate of glutamate as substrate.


Assuntos
Proteínas Arqueais/metabolismo , Furanos/metabolismo , Ácido Glutâmico/metabolismo , Ligases/metabolismo , Tiramina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Vias Biossintéticas , Clonagem Molecular , Cristalografia por Raios X , Furanos/química , Ácido Glutâmico/química , Cinética , Ligases/química , Ligases/genética , Methanocaldococcus/enzimologia , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiramina/química
3.
Biochemistry ; 53(28): 4635-47, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24977328

RESUMO

We have established the biosynthetic pathway and the associated genes for the biosynthesis of the 5-(aminomethyl)-3-furanmethanol (F1) moiety of methanofuran in the methanogenic archaeon Methanocaldococcus jannaschii. The recombinant enzyme, derived from the MJ1099 gene, was shown to readily condense glyceraldehyde 3-phosphate (Ga-3P) and dihydroxyacetone-P (DHAP) to form 4-(hydroxymethyl)-2-furancarboxaldehyde phosphate (4-HFC-P). The recombinant purified pyridoxal 5'-phosphate-dependent aminotransferase, derived from the MJ0684 gene, was found to be specific for catalyzing the transamination reaction between 4-HFC-P and [(15)N]alanine to produce [(15)N] 5-(aminomethyl)-3-furanmethanol-P (F1-P) and pyruvate. To confirm these results in cell extracts, we developed sensitive analytical methods for the liquid chromatography-ultraviolet-electrospray ionization mass spectrometry analysis of F1 as a 7-nitrobenzofurazan derivative. This method has allowed for the quantitation of trace amounts of F1 and F1-P in cell extracts and the measurement of the incorporation of stable isotopically labeled precursors into F1. After incubation of cell extracts with [1,2,3-(13)C3]pyruvate and DHAP, 4-([(2)H2]hydroxymethyl)-2-furancarboxylic acid phosphate (4-HFCA-P) or 4-([(2)H2]hydroxymethyl)-2-furancarboxaldehyde phosphate (4-HFC-P) was found to be incorporated into F1-P. 4-HFCA-P and 4-HFC-P were confirmed in cell extracts after removal of the phosphate. The low level of incorporation of [1,2,3-(13)C3]pyruvate into F1-P in these experiments is explained by the fact that the labeled pyruvate must first be converted into Ga-3-P through gluconeogenesis before being incorporated into 4-HFC-P. Cell extracts incubated with 4-HFC-P and a mixture of [(15)N]aspartate, [(15)N]glutamate, and [(15)N]alanine produced [(15)N]F1-P. We also demonstrated that aqueous solutions of methylglyoxal or pyruvate heated with dihydroxyacetone led to the formation of 4-HFC and 4-HFCA, suggesting a possible prebiotic route to this moiety of methanofuran.


Assuntos
Proteínas Arqueais/metabolismo , Furanos/metabolismo , Methanocaldococcus/metabolismo , Transaminases/metabolismo , Proteínas Arqueais/genética , Methanocaldococcus/genética , Transaminases/genética
4.
J Biol Chem ; 288(4): 2376-87, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23204519

RESUMO

Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Aldeídos/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Domínio Catalítico , Cromatografia Líquida/métodos , DNA Complementar/metabolismo , Desaminação , Descarboxilação , Ácidos Indolacéticos/química , Indóis/química , Cinética , Espectrometria de Massas/métodos , Modelos Químicos , Dados de Sequência Molecular , Mutagênese , Mutação , Triptofano/química
5.
Proc Natl Acad Sci U S A ; 108(44): 18179-84, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22006310

RESUMO

An effective plant alkaloid chemical defense requires a variety of transport processes, but few alkaloid transporters have been characterized at the molecular level. Previously, a gene fragment encoding a putative plasma membrane proton symporter was isolated, because it was coordinately regulated with several nicotine biosynthetic genes. Here, we show that this gene fragment corresponds to a Nicotiana tabacum gene encoding a nicotine uptake permease (NUP1). NUP1 belongs to a plant-specific class of purine uptake permease-like transporters that originated after the bryophytes but before or within the lycophytes. NUP1 expressed in yeast cells preferentially transported nicotine relative to other pyridine alkaloids, tropane alkaloids, kinetin, and adenine. NUP1-GFP primarily localized to the plasma membrane of tobacco Bright Yellow-2 protoplasts. WT NUP1 transcripts accumulated to high levels in the roots, particularly in root tips. NUP1-RNAi hairy roots had reduced NUP1 mRNA accumulation levels, reduced total nicotine levels, and increased nicotine accumulation in the hairy root culture media. Regenerated NUP1-RNAi plants showed reduced foliar and root nicotine levels as well as increased seedling root elongation rates. Thus, NUP1 affected nicotine metabolism, localization, and root growth.


Assuntos
Alcaloides/metabolismo , Nicotiana/metabolismo , Nicotina/metabolismo , Genes de Plantas , Dados de Sequência Molecular , Nicotiana/genética
6.
J Environ Qual ; 42(1): 56-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673739

RESUMO

An innovative approach for measuring phytase activity (PA) in surface water is presented. A substrate analog of -inositol hexakis(dihydrogen) phosphate (InsP), commonly referred to as phytic acid, 1--5--(1-oxo-1-(2' ,4,7,7' -tetrachloro-3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-6-yl)-5,8,11-trioxa-2-azatridecan-13-yl)-inositol 1,2,3,4,6-pentakis--(dihydrogen) phosphate, referred to as tetrachlorofluorescein (TET) tethered (T)InsP, has been developed that can be used to monitor the (phytase-catalyzed) phosphate ester bond-cleavage reaction. Test phytases, (wheat [4-] and [3-] phytase) sequentially remove phosphate groups from TET TInsP, producing dephosphorylated probe species that were readily separated by reversed-phase high-performance liquid chromatography (RP-HPLC). Because dephosphorylated probe species retain the TET group, highly sensitive quantification could be achieved using fluorescence detection (excitation/emission ' = 245/540 nm). Calibration curves for TET TInsP, which could be used as a standard for quantifying all probe species, were linear ( > 0.999) over the range of concentrations tested. Phytase-generated dephosphorylated probe species were characterized or identified using RP-HPLC with mass spectrometry. Results of mass spectrometry analysis show that the RP-HPLC system was capable of distinguishing between dephosphorylated probe species at the regioisomeric level. The TET TInsP molecular probe was used to successfully measure PA in pond water. We found that the PA associated with the particulate plus water-soluble fraction was greater than that observed for the water-soluble fraction alone. Moreover, it appeared that 4- and 3-phytase were active in pond water based on an analysis of the chromatographic profile (i.e., elution sequence) of dephosphorylated probe species produced. The advent of a fluorescent substrate analog of InsP affords environmental scientists with the means to unambiguously quantify an extremely small amount of phytase-generated dephosphorylated product(s), enabling the measurement of PA over a reasonably short time duration, in an environmental sample containing low concentrations of enzyme.


Assuntos
6-Fitase , Água , Fosfatos , Ácido Fítico , Triticum
7.
J Am Chem Soc ; 134(20): 8487-93, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22497289

RESUMO

The nanoscale parameters of metal clusters and lattices have a crucial influence on the macroscopic properties of materials. Herein, we provide a detailed study on the size and shape of isolated yttrium carbide clusters in different fullerene cages. A family of diyttrium endohedral metallofullerenes with the general formula of Y(2)C(2n) (n = 40-59) are reported. The high field (13)C nuclear magnetic resonance (NMR) and density functional theory (DFT) methods are employed to examine this yttrium carbide cluster in certain family members, Y(2)C(2)@D(5)(450)-C(100), Y(2)C(2)@D(3)(85)-C(92), Y(2)C(2)@C(84), Y(2)C(2)@C(3v)(8)-C(82), and Y(2)C(2)@C(s)(6)-C(82). The results of this study suggest that decreasing the size of a fullerene cage with the same (Y(2)C(2))(4+) cluster results in nanoscale fullerene compression (NFC) from a nearly linear stretched geometry to a constrained "butterfly" structure. The (13)C NMR chemical shift and scalar (1)J(YC) coupling parameters provide a very sensitive measure of this NFC effect for the (Y(2)C(2))(4+) cluster. The crystal structural parameters of a previously reported metal carbide, Y(2)C(3) are directly compared to the (Y(2)C(2))(4+) cluster in the current metallofullerene study.

8.
Biochem Biophys Res Commun ; 418(2): 211-6, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22266321

RESUMO

Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine.


Assuntos
Acetaldeído/análogos & derivados , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Petroselinum/enzimologia , Tirosina Descarboxilase/metabolismo , Tirosina/metabolismo , Acetaldeído/síntese química , Acetaldeído/metabolismo , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Fenol , Thalictrum/enzimologia , Tirosina/química , Tirosina Descarboxilase/química , Tirosina Descarboxilase/genética
9.
J Am Chem Soc ; 133(25): 9741-50, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21548647

RESUMO

The dimetallic endohedral heterofullerene (EHF), Gd(2)@C(79)N, was prepared and isolated in a relatively high yield when compared with the earlier reported heterofullerene, Y(2)@C(79)N. Computational (DFT), chemical reactivity, Raman, and electrochemical studies all suggest that the purified Gd(2)@C(79)N, with the heterofullerene cage, (C(79)N)(5-) has comparable stability with other better known isoelectronic metallofullerene (C(80))(6-) cage species (e.g., Gd(3)N@C(80)). These results describe an exceptionally stable paramagnetic molecule with low chemical reactivity with the unpaired electron spin density localized on the internal diatomic gadolinium cluster and not on the heterofullerene cage. EPR studies confirm that the spin state of Gd(2)@C(79)N is characterized by a half-integer spin quantum number of S = 15/2. The spin (S = ½) on the N atom of the fullerene cage and two octet spins (S = 7/2) of two encapsulated gadoliniums are coupled with each other in a ferromagnetic manner with a small zero-field splitting parameter D. Because the central line of Gd(2)@C(79)N is due to the Kramer's doublet with a half-integer spin quantum number of S = 15/2, this relatively sharp line is prominent and the anisotropic nature of the line is weak. Interestingly, in contrast with most Gd(3+) ion environments, the central EPR line (g = 1.978) is observable even at room temperature in a toluene solution. Finally, we report the first EHF derivative, a diethyl bromomalonate monoadduct of Gd(2)@C(79)N, which was prepared and isolated via a modified Bingel-Hirsch reaction.


Assuntos
Fulerenos/química , Gadolínio , Magnetismo , Espectroscopia de Ressonância de Spin Eletrônica
10.
Inorg Chem ; 50(10): 4256-9, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21506556

RESUMO

In this paper, we report the synthesis, purification, (13)C NMR, and other characterization studies of Y(3)N@C(88). The (13)C NMR, UV-vis, and chromatographic data suggest an Y(3)N@C(88) having an IPR-allowed cage with D(2)(35)-C(88) symmetry. In earlier density functional theory (DFT) computational and X-ray crystallographic studies, it was reported that lanthanide (A(3)N)(6+) clusters are stabilized in D(2)(35)-C(88) symmetry cages and have reduced HOMO-LUMO gaps relative to other trimetallic nitride endohedral metallofullerene cage systems, for example, A(3)N@C(80). In this paper, we report that the nonlanthanide (Y(3)N)(6+) cluster in the D(2)(35)-C(88) cage exhibits a HOMO-LUMO gap consistent with other lanthanide A(3)N@C(88) molecules based on electrochemical measurements and DFT computational studies. These results suggest that the reduced HOMO-LUMO gap of A(3)N@C(88) systems is a property dominated by the D(2)(35)-C(88) carbon cage and not f-orbital lanthanide electronic metal cluster (A(3)N)(6+) orbital participation.


Assuntos
Fulerenos , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Elétrons , Fulerenos/química , Fulerenos/isolamento & purificação , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
11.
J Am Chem Soc ; 131(33): 11762-9, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19639998

RESUMO

The members of a new family of yttrium trimetallic nitride-templated (TNT) endohedral metallofullerenes (EMFs), Y(3)N@C(2n) (n = 40-43), have been synthesized and purified. On the basis of experimental and computational (13)C NMR studies, we propose cage structures for Y(3)N@I(h)-C(80) (IPR allowed), Y(3)N@D(5h)-C(80) (IPR allowed), Y(3)N@C(s)-C(82) (non-IPR), Y(3)N@C(s)-C(84) (non-IPR), and Y(3)N@D(3)-C(86) (IPR allowed). A significant result is the limited number of isomers found for each carbon cage. For example, there are 24 isolated pentagon rule (IPR) and 51 568 non-IPR structures possible for the C(84) cage, but only one major isomer of Y(3)N@C(s)-C(84) was found. The current study confirms the unique role of the trimetallic nitride (M(3)N)(6+) cluster template in the Kratschmer-Huffman electric-arc process for fullerene cage size and high symmetry isomer selectivity. This study reports the first (89)Y NMR results for Y(3)N@I(h)-C(80,) Y(3)N@C(s)(51365)-C(84), and Y(3)N@D(3)(19)-C(86), which reveal a progression from isotropic to restricted (Y(3)N)(6+) cluster motional processes. Even more surprising is the sensitivity of the (89)Y NMR chemical shift parameter to subtle changes in the electronic environment at each yttrium nuclide in the (Y(3)N)(6+) cluster (more than 200 ppm for these EMFs). This (89)Y NMR study suggests that (89)Y NMR will evolve as a powerful tool for cluster motional studies of EMFs.


Assuntos
Carbono/química , Fulerenos/química , Ítrio/química , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular
12.
J Am Chem Soc ; 130(52): 17755-60, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19055362

RESUMO

Photochemically generated benzyl radicals react with Sc(3)N@C(80)-I(h) to produce a dibenzyl adduct [Sc(3)N@C(80)(CH(2)C(6)H(5))(2)] in 82% yield and high regioselectivity. The adduct's (1)H spectrum revealed high symmetry: only one AB pattern was observed for the methylene protons. The (13)C NMR spectrum suggested a C(2)-symmetrical structure. DFT calculations reveal that a 1,4-adduct is more favorable than a 1,2-adduct by >10 kcal/mol. The 1,4-structure on [566] ring junctions was unambiguously confirmed by X-ray crystallographic analysis. UV-vis spectra revealed that the removal of two p orbitals from the pi system of the cage together with the benzylic substituents change the electronic properties of the metallofullerene in a manner similar to those reported for disilirane and trifluoromethyl moieties. Under the same conditions from Lu(3)N@C(80)-I(h) we prepared (63% yield) Lu(3)N@C(80)(CH(2)C(6)H(5))(2), which demonstrated properties similar to the 1,4-dibenzyl adduct of Sc(3)N@C(80)-I(h).


Assuntos
Fulerenos/química , Lutécio/química , Compostos de Nitrogênio/química , Compostos Organometálicos/química , Escândio/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Processos Fotoquímicos , Espectrofotometria Ultravioleta , Especificidade por Substrato
13.
J Am Chem Soc ; 129(50): 15710-7, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18027949

RESUMO

The first reactions of trimetallic nitride templated endohedral metallofullerenes (TNT EMFs) with carbon radicals generated from diethyl malonate catalyzed by manganese(III) acetate are reported. Two methano monoadducts, Sc3N@C80-A and Sc3N@C80-B, were isolated and characterized. Sc3N@C80-A contains two ester moieties, whereas Sc3N@C80-B contains only one ester group and a hydrogen atom on the central carbon of the addend. NMR spectroscopy of the two monoadducts suggests that the addition occurs regioselectively at a 6,6-ring juncture on the surface of the icosahedrally (Ih) symmetric Sc3N@C80, forming the first 6,6-ring-bridged methano Ih Sc3N@C80 derivatives. The measured 1J(C,H) = 147 Hz for the methano carbon with its hydrogen in monoadduct Sc3N@C80-B nearly perfectly matches the data for pi-homoaromatic systems, indicating an open [6,6]-methano structure. Geometry optimization also found that the "closed" [6,6]-methano structures were energetically unstable and always led to the open forms. Thus, an "open" [6,6]-methanofulleride structure is proposed, which was induced by the norcaradiene rearrangement, resulting in the cleavage of the cyclopropane ring and the formation of energetically stable open cage fullerene derivatives. These are the first examples of thermodynamically stable adducts of the "open" type at the 6,6-ring juncture of Ih Sc3N@C80, differing greatly from the "closed" 5,6-ring juncture adducts reported previously. In addition, bis-, tri-, and up to octaadducts of Sc3N@C80 were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry; this synthetic method was also applied to Lu3N@C80, producing adducts with up to 10 substituents on the carbon cage. These are the highest levels of substitution of TNT metallofullerenes reported so far.


Assuntos
Fulerenos/química , Manganês/química , Catálise , Cromatografia Líquida de Alta Pressão , Radicais Livres/química , Espectroscopia de Ressonância Magnética , Malonatos/química , Modelos Moleculares , Estrutura Molecular , Nitrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Termodinâmica
14.
Photochem Photobiol ; 82(2): 527-37, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16613509

RESUMO

We used Shiga-like toxin B subunit (SLTB) to deliver the photosensitizer, chlorin e6 (Ce6), to Vero cells expressing the Gb3 receptor. Our aim was to provide an example of carrier-enhanced photodynamic cell killing with which to start a systematic consideration of photosensitizer delivery at the subcellular level. SLTB, in contrast to many other potential protein carriers, is delivered intracellularly to the Golgi apparatus and endoplasmic reticulum (ER). Ce6 was chosen both for its phototoxic properties and its potential for covalent conjugation with SLTB. Ce6-SLTB after cleanup contained < or =10% noncovalently bound Ce6. The noncovalent binding of porphyrins and chlorins to protein conjugates has been well documented, and hence the effective cleanup procedure is a significant accomplishment. We demonstrate that Ce6-SLTB enhances delivery of Ce6 to target cells as compared to free Ce6. In Vero cells, Ce6-SLTB was over an order of magnitude more photodynamically toxic than free Ce6. Moreover, we show that in the case of Ce6-SLTB, photosensitizer accumulation is in a combination of subcellular sites including mitochondria, Golgi apparatus, ER and plasma membrane. The occurrence in nature of diverse B subunit binding sites and the possibilities of varied intracellular delivery make optimized use of B subunit carriers attractive.


Assuntos
Porfirinas/farmacologia , Radiossensibilizantes/farmacologia , Toxinas Shiga/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Clorofilídeos , Interações Medicamentosas , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Fotoquímica , Porfirinas/administração & dosagem , Porfirinas/metabolismo , Toxinas Shiga/química , Células Vero
15.
ACS Chem Biol ; 11(11): 3035-3042, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27588426

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N5-l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 µM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Sideróforos/metabolismo , Aspergillus fumigatus/metabolismo
16.
Chem Commun (Camb) ; (28): 3594-6, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16010335

RESUMO

New pyrrolidino derivatives of both diamagnetic and paramagnetic trimetallic nitride templated endohedral metallofullerenes were synthesized by the Prato reaction, isolated and characterized by means of MALDI-TOF MS, NMR and UV-vis spectroscopies.


Assuntos
Fulerenos/química , Metais/química , Pirrolidinonas/síntese química , Magnetismo , Pirrolidinonas/química , Análise Espectral
17.
Carbohydr Polym ; 92(2): 1443-50, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399175

RESUMO

Structurally varied, carboxyl-containing cellulose derivatives were evaluated for their ability to form amorphous solid dispersions (ASD) with ellagic acid (EA), in order to improve the solubility of this high-melting, poorly bioavailable, but highly bioactive natural flavonoid compound. ASDs of EA with carboxymethylcellulose acetate butyrate (CMCAB), cellulose acetate adipate propionate (CAAdP), and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were prepared, and EA dissolution from these ASDs was compared with that from pure crystalline EA and from EA/poly(vinylpyrrolidinone) (PVP) solid dispersions (SD). Polymer/drug mixtures were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR). The XRPD and FT-IR results indicated that EA was amorphous in solid dispersions with EA concentration up to 25 wt%. The stability against crystallization and solution concentrations of EA from these solid dispersions were significantly higher than those observed for physical mixtures and pure crystalline EA. HPMCAS stabilized EA most effectively, among the polymers tested, against both chemical degradation and recrystallization. The relative ability to solubilize EA from ASDs at pH 6.8 was PVP>>HPMCAS>>CMCAB. EA dissolves from ASD in PVP quickly and completely (maximum 92%) at pH 6.8, but EA is also released from PVP at pH 1.2, and then crystallizes rapidly. Therefore PVP is not a practical candidate for EA ASD. In contrast, the cellulose derivative ASDs show very slow EA release at pH 1.2 (<4%) and faster but still incomplete drug release at pH 6.8 (maximum 35% for HPMCAS SD). The pH-triggered drug release from HPMCAS ASD makes HPMCAS a practical choice for EA solubility enhancement.


Assuntos
Celulose/química , Portadores de Fármacos/química , Ácido Elágico/química , Disponibilidade Biológica , Estabilidade de Medicamentos , Ácido Elágico/farmacocinética , Ésteres , Interações Hidrofóbicas e Hidrofílicas , Solubilidade
18.
Carbohydr Polym ; 92(2): 2033-40, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399255

RESUMO

Amorphous solid dispersions (ASD) of quercetin (Que) in cellulose derivative matrices, carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and cellulose acetate adipate propionate (CAAdP) were prepared with the goal of identifying an ASD that effectively increased Que aqueous solution concentration. Crystalline quercetin and Que/poly(vinylpyrrolidinone) (PVP) ASD were evaluated for comparison. Powder X-ray diffraction (XRPD) and differential scanning calorimetry (DSC) were used to examine the crystallinity of ASDs, physical mixtures (PM) and quercetin. ASDs were amorphous up to 50 wt% Que. Que stability against crystallization and solution concentrations from these ASDs were significantly higher than those observed for physical mixtures and crystalline Que. PVP stabilizes against both Que degradation and recrystallization; in contrast, these carboxylated cellulose derivatives inhibit recrystallization but release Que slowly. PVP ASDs afforded fast and complete drug release, while ASDs using these three cellulose derivatives provide slow, incomplete, pH-triggered drug release.


Assuntos
Celulose/química , Portadores de Fármacos/química , Quercetina/química , Estabilidade de Medicamentos , Povidona/química , Solubilidade
19.
Nat Chem ; 5(10): 880-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24056346

RESUMO

Although fullerenes were discovered nearly three decades ago, the mechanism of their formation remains a mystery. Many versions of the classic 'bottom-up' formation mechanism have been advanced, starting with C2 units that build up to form chains and rings of carbon atoms and ultimately form those well-known isolated fullerenes (for example, I(h)-C60). In recent years, evidence from laboratory and interstellar observations has emerged to suggest a 'top-down' mechanism, whereby small isolated fullerenes are formed via shrinkage of giant fullerenes generated from graphene sheets. Here, we present molecular structural evidence for this top-down mechanism based on metal carbide metallofullerenes M2C2@C1(51383)-C84 (M = Y, Gd). We propose that the unique asymmetric C1(51383)-C84 cage with destabilizing fused pentagons is a preserved 'missing link' in the top-down mechanism, and in well-established rearrangement steps can form many well-known, high-symmetry fullerene structures that account for the majority of solvent-extractable metallofullerenes.


Assuntos
Fulerenos/química , Gadolínio/química , Ítrio/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solventes/química
20.
Phytochemistry ; 75: 32-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22217745

RESUMO

Potato (Solanum tuberosum L.), a domesticated species that is the fourth most important world agricultural commodity, requires significant management to minimize the effects of herbivore and pathogen damage on crop yield. A wild relative, Solanum chacoense Bitt., has been of interest to plant breeders because it produces an abundance of novel steroidal glycoalkaloid compounds, leptines and leptinines, which are particularly effective deterrents of herbivory by the Colorado potato beetle (Leptinotarsa decemlineata Say). Biochemical approaches were used in this study to investigate the formation and accumulation of SGAs in S. chacoense. SGA contents were determined in various organs at different stages of organ maturity during a time course of plant development. Leptines and leptinines were the main contributors to the increased levels in SGA concentration measured in the aerial versus the subterranean organs of S. chacoense accession 8380-1. Leptines were not detected in aboveground stolons until the stage where shoots had formed mature chlorophyllous leaves. To gain insights into SGA biosynthesis, the abundance of SGAs and steady-state transcripts of genes coding for enzymes of the central terpene and SGA-specific pathways in various plant organs at anthesis were compared. For two genes of primary terpene metabolism, transcript and SGA abundances were correlated, although with some discrepancies. For genes associated with SGA biosynthesis, transcripts were not detected in some tissues containing SGAs; however these transcripts were detected in the progenitor tissues, indicating the possibility that under our standard growth conditions, SGA biosynthesis is largely limited to highly proliferative tissues such as shoot, root and floral meristems.


Assuntos
Alcaloides de Solanáceas/metabolismo , Solanum tuberosum/metabolismo , Conformação Molecular , Extratos Vegetais/análise , Extratos Vegetais/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Alcaloides de Solanáceas/análise , Solanum tuberosum/química , Solanum tuberosum/crescimento & desenvolvimento , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa