Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Minim Invasive Gynecol ; 27(3): 655-664, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31125722

RESUMO

STUDY OBJECTIVE: To determine the ability of tissue containment systems to prevent leakage of cancer cell surrogates when subjected to forces encountered during power morcellation procedures. DESIGN: In vitro study. SETTING: Medical device research laboratory. INTERVENTIONS: Samples from 7 different legally marketed tissue containment bags (1 of which is indicated for power morcellation) were subjected to dye and bacteriophage penetration tests at pressures ranging from 0.5 to 50 times the insufflation pressure. The minimum pressure required to cause bag leakage was measured. Subsequently, the morcellation leakage safety factor for each bag was determined as the ratio of the minimum leakage pressure of the bag to the total pressure contributed from insufflation pressure and mechanical forces acting during the power morcellation procedure. MEASUREMENT AND MAIN RESULTS: The leakage performance of the bags varied markedly from brand to brand. No correlation was found between leakage pressure and the bag material or the total bag thickness. The leakage pressures ranged from 26 mmHg to >1293 mmHg for the 7 bags, and safety factors ranged from 1 to 50 when only the insufflation pressure was considered. However, if the morcellation forces were included in the calculation, the safety factor dropped by 6-fold for all brands and dropped below 1, indicating likelihood of leakage, for 2 of the 7 brands. CONCLUSION: This study provides a mechanism for more realistically simulating the conditions experienced by containment bags during morcellation and quantifying the level of safety provided by the bags.


Assuntos
Análise de Falha de Equipamento/métodos , Morcelação/instrumentação , Pressão , Estresse Mecânico , Equipamentos Cirúrgicos/efeitos adversos , Miomectomia Uterina/instrumentação , Feminino , Humanos , Histerectomia/instrumentação , Histerectomia/métodos , Técnicas In Vitro , Insuflação , Laparoscopia/instrumentação , Laparoscopia/métodos , Leiomioma/patologia , Leiomioma/cirurgia , Morcelação/métodos , Permeabilidade , Equipamentos Cirúrgicos/normas , Miomectomia Uterina/métodos , Neoplasias Uterinas/patologia , Neoplasias Uterinas/cirurgia
2.
Risk Anal ; 39(3): 647-661, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30229968

RESUMO

Outbreaks of influenza represent an important health concern worldwide. In many cases, vaccines are only partially successful in reducing the infection rate, and respiratory protective devices (RPDs) are used as a complementary countermeasure. In devising a protection strategy against influenza for a given population, estimates of the level of protection afforded by different RPDs is valuable. In this article, a risk assessment model previously developed in general form was used to estimate the effectiveness of different types of protective equipment in reducing the rate of infection in an influenza outbreak. It was found that a 50% compliance in donning the device resulted in a significant (at least 50% prevalence and 20% cumulative incidence) reduction in risk for fitted and unfitted N95 respirators, high-filtration surgical masks, and both low-filtration and high-filtration pediatric masks. An 80% compliance rate essentially eliminated the influenza outbreak. The results of the present study, as well as the application of the model to related influenza scenarios, are potentially useful to public health officials in decisions involving resource allocation or education strategies.


Assuntos
Controle de Doenças Transmissíveis , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Dispositivos de Proteção Respiratória , Medição de Risco/métodos , Surtos de Doenças , Epidemias/prevenção & controle , Humanos , Controle de Infecções , Vacinas contra Influenza , Modelos Teóricos , Exposição Ocupacional , Prevalência , Saúde Pública , Reprodutibilidade dos Testes
3.
J Occup Environ Hyg ; 14(3): 214-223, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27754781

RESUMO

Surgical respirators, surgical masks (SMs), and facemasks for pediatric use (FPUs) are routinely used in the U.S. healthcare industry as personal protective equipment (PPE) against infectious diseases. While N95s including surgical respirators have been routinely studied, SMs and FPUs have not received as much attention, particularly in the context of aerosolized threats. This is because SMs and PFUs are not designed to protect against sub-micron aerosols. However, with the possibility of new or re-emerging airborne diseases or bio-aerosol weapons lingering, combined with the limited availability of respirators and logistical issues associated with fit-testing millions, the general adult and pediatric populations may elect to wear SMs and FPUs, respectively, in the case of a pandemic or a bio-terrorist attack. When a person dons a PPE, gaps are created between the wearer's face and the PPE, and aerosols leaking through these gaps can be an important contributor to the risk of infection compared to filtered aerosols. To understand and quantify the contribution of leakage of aerosols through gaps, with particular emphasis on SMs and FPUs, this study investigated leakage of charge-neutralized, polydispersed, dried sodium-chloride aerosols across different brands of PPE. Different breathing rates, aerosol particle sizes, and gap sizes were considered. A few major findings of this study were: (a) leakage, is not a strong function of sub-micron aerosol size; (b) for the same gap size, leakage of aerosols through surgical respirators can often be higher than in SMs and FPUs; and (c) as the gap size increases, the increase in leakage through surgical respirators is higher compared for SMs and FPUs, implying that some SMs and FPUs that possess electret layers may be preferable to N95s that have not been fit-tested. The results obtained can also be used to explain conflicting findings from clinical studies on the effectiveness of SMs when compared to N95s and can be input into risk-assessment models to determine the increase in infection rate resulting from deployment of PPE under less-than-ideal conditions.


Assuntos
Aerossóis , Exposição por Inalação/prevenção & controle , Máscaras/normas , Dispositivos de Proteção Respiratória/normas , Desenho de Equipamento , Filtração/instrumentação , Teste de Materiais/métodos , Tamanho da Partícula , Taxa Respiratória
4.
J Biomech Eng ; 137(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26065371

RESUMO

As part of an ongoing effort to develop verification and validation (V&V) standards for using computational fluid dynamics (CFD) in the evaluation of medical devices, we have developed idealized flow-based verification benchmarks to assess the implementation of commonly cited power-law based hemolysis models in CFD. Verification process ensures that all governing equations are solved correctly and the model is free of user and numerical errors. To perform verification for power-law based hemolysis modeling, analytical solutions for the Eulerian power-law blood damage model (which estimates hemolysis index (HI) as a function of shear stress and exposure time) were obtained for Couette and inclined Couette flow models, and for Newtonian and non-Newtonian pipe flow models. Subsequently, CFD simulations of fluid flow and HI were performed using Eulerian and three different Lagrangian-based hemolysis models and compared with the analytical solutions. For all the geometries, the blood damage results from the Eulerian-based CFD simulations matched the Eulerian analytical solutions within ∼1%, which indicates successful implementation of the Eulerian hemolysis model. Agreement between the Lagrangian and Eulerian models depended upon the choice of the hemolysis power-law constants. For the commonly used values of power-law constants (α = 1.9-2.42 and ß = 0.65-0.80), in the absence of flow acceleration, most of the Lagrangian models matched the Eulerian results within 5%. In the presence of flow acceleration (inclined Couette flow), moderate differences (∼10%) were observed between the Lagrangian and Eulerian models. This difference increased to greater than 100% as the beta exponent decreased. These simplified flow problems can be used as standard benchmarks for verifying the implementation of blood damage predictive models in commercial and open-source CFD codes. The current study only used power-law model as an illustrative example to emphasize the need for model verification. Similar verification problems could be developed for other types of hemolysis models (such as strain-based and energy dissipation-based methods). However, since the current study did not include experimental validation, the results from the verified models do not guarantee accurate hemolysis predictions. This verification step must be followed by experimental validation before the hemolysis models can be used for actual device safety evaluations.


Assuntos
Simulação por Computador , Coração Auxiliar/efeitos adversos , Hemólise , Hidrodinâmica , Modelos Biológicos , Benchmarking , Estresse Mecânico , Propriedades de Superfície
5.
Sci Rep ; 13(1): 5104, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991010

RESUMO

Tissue containment systems (TCS) are medical devices that may be used during morcellation procedures during minimally invasive laparoscopic surgery. TCS are not new devices but their use as a potential mitigation for the spread of occult malignancy during laparoscopic power morcellation of fibroids and/or the uterus has been the subject of interest following reports of upstaging of previously undetected sarcoma in women who underwent a laparoscopic hysterectomy. Development of standardized test methods and acceptance criteria to evaluate the safety and performance of these devices will speed development, allowing for more devices to benefit patients. As a part of this study, a series of preclinical experimental bench test methods were developed to evaluate the mechanical and leakage performance of TCS that may be used in power morcellation procedures. Experimental tests were developed to evaluate mechanical integrity, e.g., tensile, burst, puncture, and penetration strengths for the TCS, and leakage integrity, e.g., dye and microbiological leakage (both acting as surrogates for blood and cancer cells) through the TCS. In addition, to evaluate both mechanical integrity and leakage integrity as a combined methodology, partial puncture and dye leakage was conducted on the TCS to evaluate the potential for leakage due to partial damage caused by surgical tools. Samples from 7 different TCSs were subjected to preclinical bench testing to evaluate leakage and mechanical performance. The performance of the TCSs varied significantly between different brands. The leakage pressure of the TCS varied between 26 and > 1293 mmHg for the 7 TCS brands. Similarly, the tensile force to failure, burst pressure, and puncture force varied between 14 and 80 MPa, 2 and 78 psi, and 2.5 N and 47 N, respectively. The mechanical failure and leakage performance of the TCS were different for homogeneous and composite TCSs. The test methods reported in this study may facilitate the development and regulatory review of these devices, may help compare TCS performance between devices, and increase provider and patient accessibility to improved tissue containment technologies.


Assuntos
Laparoscopia , Leiomioma , Miomectomia Uterina , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/patologia , Miomectomia Uterina/métodos , Leiomioma/patologia , Útero/patologia , Histerectomia/métodos , Laparoscopia/métodos
6.
Ann Biomed Eng ; 51(1): 34-44, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35902414

RESUMO

In response to the respiratory protection device shortage during the COVID-19 pandemic, the additive manufacturing (AM) community designed and disseminated numerous AM face masks. Questions regarding the effectiveness of AM masks arose because these masks were often designed with limited (if any) functional performance evaluation. In this study, we present a fit evaluation methodology in which AM face masks are virtually donned on a standard digital headform using finite element-based numerical simulations. We then extract contour plots to visualize the contact patches and gaps and quantify the leakage surface area for each mask frame. We also use the methodology to evaluate the effects of adding a foam gasket and variable face mask sizing, and finally propose a series of best practices. Herein, the methodology is focused only on characterizing the fit of AM mask frames and does not considering filter material or overall performance. We found that AM face masks may provide a sufficiently good fit if the sizing is appropriate and if a sealing gasket material is present to fill the gaps between the mask and face. Without these precautions, the rigid nature of AM materials combined with the wide variation in facial morphology likely results in large gaps and insufficient adaptability to varying user conditions which may render the AM face masks ineffective.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Máscaras
7.
Ann Biomed Eng ; 51(1): 253-269, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401112

RESUMO

Computational fluid dynamics (CFD) is widely used to simulate blood-contacting medical devices. To be relied upon to inform high-risk decision making, however, model credibility should be demonstrated through validation. To provide robust data sets for validation, researchers at the FDA and collaborators developed two benchmark medical device flow models: a nozzle and a centrifugal blood pump. Experimental measurements of the flow fields and hemolysis were acquired using each model. Concurrently, separate open interlaboratory CFD studies were performed in which participants from around the world, who were blinded to the measurements, submitted CFD predictions of each benchmark model. In this study, we report the results of the interlaboratory CFD study of the FDA benchmark blood pump. We analyze the results of 24 CFD submissions using a wide range of different flow solvers, methods, and modeling parameters. To assess the accuracy of the CFD predictions, we compare the results with experimental measurements of three quantities of interest (pressure head, velocity field, and hemolysis) at different pump operating conditions. We also investigate the influence of different CFD methods and modeling choices used by the participants. Our analyses reveal that, while a number of CFD submissions accurately predicted the pump performance for individual cases, no single participant was able to accurately predict all quantities of interest across all conditions. Several participants accurately predicted the pressure head at all conditions and the velocity field in all but one or two cases. Only one of the eight participants who submitted hemolysis results accurately predicted absolute plasma free hemoglobin levels at a majority of the conditions, though most participants were successful at predicting relative hemolysis levels between conditions. Overall, this study highlights the need to validate CFD modeling of rotary blood pumps across the entire range of operating conditions and for all quantities of interest, as some operating conditions and regions (e.g., the pump diffuser) are more challenging to accurately predict than others. All quantities of interest should be validated because, as shown here, it is possible to accurately predict hemolysis despite having relatively inaccurate predictions of the flow field.


Assuntos
Coração Auxiliar , Humanos , Simulação por Computador , Hidrodinâmica , Benchmarking , Hemólise
8.
Med Phys ; 38(10): 5601-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21992378

RESUMO

PURPOSE: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. METHODS: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. RESULTS: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. CONCLUSIONS: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.


Assuntos
Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Radiografia/instrumentação , Algoritmos , Neoplasias da Mama/diagnóstico , Meios de Contraste/administração & dosagem , Diagnóstico por Imagem/métodos , Desenho de Equipamento , Feminino , Humanos , Cinética , Modelos Estatísticos , Imagens de Fantasmas , Radiografia/métodos , Reprodutibilidade dos Testes , Reologia , Raios X
9.
J Biomech Eng ; 133(4): 041002, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21428676

RESUMO

This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.


Assuntos
Benchmarking , Simulação por Computador , Hidrodinâmica , Laboratórios , Reologia , United States Food and Drug Administration , Algoritmos , Pressão , Reprodutibilidade dos Testes , Estados Unidos
10.
Biomed Phys Eng Express ; 7(6)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547744

RESUMO

The use of energy-based devices to treat genitourinary syndrome of menopause, termed vaginal thermotherapy (VTT), has gained significant interest in recent years. Among the primary safety concerns of this relatively new procedure is the possibility of unintentionally heating tissues adjacent to the vaginal wall, i.e., heating too deeply. Herein we use numerical simulations to evaluate monopolar radiofrequency-based (RF) VTT specifically focusing on the resultant depth of heating through a range of input parameters. Varying RF power, exposure time, and the simulated rate of blood perfusion, we map the parameter space identifying which combinations of input parameters are likely to heat past the depth of the vaginal wall and affect adjacent tissue. We found that the device parameters commonly used in the literature are likely to heat past the vaginal wall and merit further investigation. In addition, we found that the parameter typically used to describe VTT devices, total energy delivered, does not reliably indicate the resultant depth of heat dispersion.


Assuntos
Calefação , Hipertermia Induzida , Vagina , Feminino , Temperatura Alta , Humanos , Hipertermia Induzida/efeitos adversos , Ondas de Rádio/efeitos adversos
11.
Sci Rep ; 11(1): 10690, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021181

RESUMO

In the absence of fit-testing, leakage of aerosolized pathogens through the gaps between the face and N95 respirators could compromise the effectiveness of the device and increase the risk of infection for the exposed population. To address this issue, we have developed a model to estimate the increase in risk of infection resulting from aerosols leaking through gaps between the face and N95 respirators. The gaps between anthropometric face-geometry and N95 respirators were scanned using computed tomography. The gap profiles were subsequently input into CFD models. The amount of aerosol leakage was predicted by the CFD simulations. Leakage levels were validated using experimental data obtained using manikins. The computed amounts of aerosol transmitted to the respiratory system, with and without leaks, were then linked to a risk-assessment model to predict the infection risk for a sample population. An influenza outbreak in which 50% of the population deployed respirators was considered for risk assessment. Our results showed that the leakage predicted by the CFD model matched the experimental data within about 13%. Depending upon the fit between the headform and the respirator, the inward leakage for the aerosols ranged between 30 and 95%. In addition, the non-fit-tested respirator lowered the infection rate from 97% (for no protection) to between 42 and 80%, but not to the same level as the fit-tested respirators (12%). The CFD-based leakage model, combined with the risk-assessment model, can be useful in optimizing protection strategies for a given population exposed to a pathogenic aerosol.


Assuntos
Filtração , Máscaras , Teste de Materiais , Modelos Teóricos , Respiradores N95 , Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis , Filtração/normas , Humanos , Máscaras/normas , Respiradores N95/normas , Equipamento de Proteção Individual/normas , Reprodutibilidade dos Testes
12.
Sci Rep ; 11(1): 22079, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764438

RESUMO

Non-contact infrared thermometers (NCITs) are being widely used during the COVID-19 pandemic as a temperature-measurement tool for screening and isolating patients in healthcare settings, travelers at ports of entry, and the general public. To understand the accuracy of NCITs, a clinical study was conducted with 1113 adult subjects using six different commercially available NCIT models. A total of 60 NCITs were tested with 10 units for each model. The NCIT-measured temperature was compared with the oral temperature obtained using a reference oral thermometer. The mean difference between the reference thermometer and NCIT measurement (clinical bias) was different for each NCIT model. The clinical bias ranged from just under - 0.9 °C (under-reporting) to just over 0.2 °C (over-reporting). The individual differences ranged from - 3 to + 2 °C in extreme cases, with the majority of the differences between - 2 and + 1 °C. Depending upon the NCIT model, 48% to 88% of the individual temperature measurements were outside the labeled accuracy stated by the manufacturers. The sensitivity of the NCIT models for detecting subject's temperature above 38 °C ranged from 0 to 0.69. Overall, our results indicate that some NCIT devices may not be consistently accurate enough to determine if subject's temperature exceeds a specific threshold of 38 °C. Model-to-model variability and individual model accuracy in the displayed temperature were found to be outside of acceptable limits. Accuracy and credibility of the NCITs should be thoroughly evaluated before using them as an effective screening tool.


Assuntos
COVID-19 , Febre/diagnóstico , Termômetros , Adulto , Temperatura Corporal , COVID-19/diagnóstico , Feminino , Humanos , Raios Infravermelhos , Masculino , Pandemias , Sensibilidade e Especificidade , Adulto Jovem
13.
Med Eng Phys ; 93: 93-99, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154780

RESUMO

The ability to assess the performance of a non-contact infrared thermometer (NCIT) may be limited due to the algorithms necessary to predict a reference site temperature (e.g., oral) from a measurement of the forehead skin temperature. The algorithm not only adjusts for the difference between the reference site temperature and forehead temperature, but may also account for hardware corrections, bias adjustments and emissivity settings. These algorithms are proprietary to the manufacturer and can be unique for each device. ASTM E1965-98 (2016) is a standard test method for the evaluation of NCITs. It includes forehead thermometers; however, the algorithm must be known or an unadjusted calibration mode must be accessible. This study evaluates 6 NCIT models (10 units of each) against the ASTM standard error criterion using a blackbody source. Units were tested within the manufacturer's operating and temperature measurement range specification. A method to evaluate measurement outliers and characterize each model's performance when the adjustment algorithm is unknown is proposed. Using this method, 5 of the 6 models had a predicted error > 0.3°C.


Assuntos
Testa , Termômetros , Temperatura Corporal , Raios Infravermelhos , Temperatura
14.
J Biomech Eng ; 132(8): 081005, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20670054

RESUMO

Characterization of high-intensity focused ultrasound (HIFU) systems using ex vivo tissues is an important part of the preclinical testing for new HIFU devices. In ex vivo characterization, the lesion volume produced by the absorption of HIFU energy is quantified as operational parameters are varied. This paper examines the three methods used for lesion-volume quantification: histology, magnetic resonance (MR) imaging, and numerical calculations. The methods were studied in the context of a clinically relevant problem for HIFU procedures--that of quantifying the change in the lesion volume with changing sonication time. The lesion volumes of sonicated samples of porcine liver were determined using the three methods, at focal intensities ranging from 800 W/cm(2) to 1700 W/cm(2) and sonication times between 20 s and 40 s. It was found that histology consistently yielded lower lesion volumes than the other two methods, and the calculated values were below magnetic resonance imaging (MRI) at high applied energies. Still, the three methods agreed with each other to within a +/-10% difference for all of the experiments. Increasing the sonication time produced much larger changes in the lesion volume than increasing the acoustic intensity, for the same total energy expenditure, at lower energy (less than 1000 J) levels. At higher energy levels, (around 1500 J), increasing the sonication time and increasing the intensity produced roughly the same change in the lesion volume for the same total energy expenditure.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado/patologia , Fígado/cirurgia , Modelos Biológicos , Animais , Simulação por Computador , Relação Dose-Resposta à Radiação , Fígado/efeitos da radiação , Doses de Radiação , Suínos
15.
ASAIO J ; 65(4): 349-360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973403

RESUMO

Medical device manufacturers using computational modeling to support their device designs have traditionally been guided by internally developed modeling best practices. A lack of consensus on the evidentiary bar for model validation has hindered broader acceptance, particularly in regulatory areas. This has motivated the US Food and Drug Administration and the American Society of Mechanical Engineers (ASME), in partnership with medical device companies and software providers, to develop a structured approach for establishing the credibility of computational models for a specific use. Charged with this mission, the ASME V&V 40 Subcommittee on Verification and Validation (V&V) in Computational Modeling of Medical Devices developed a risk-informed credibility assessment framework; the main tenet of the framework is that the credibility requirements of a computational model should be commensurate with the risk associated with model use. This article provides an overview of the ASME V&V 40 standard and an example of the framework applied to a generic centrifugal blood pump, emphasizing how experimental evidence from in vitro testing can support computational modeling for device evaluation. Two different contexts of use for the same model are presented, which illustrate how model risk impacts the requirements on the V&V activities and outcomes.


Assuntos
Simulação por Computador/normas , Desenho de Equipamento/normas , Coração Auxiliar , Hemólise , Humanos , Estados Unidos , United States Food and Drug Administration
16.
J Biomed Mater Res B Appl Biomater ; 107(4): 1132-1140, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30184332

RESUMO

Adequate cleaning of reusable medical devices is critical for preventing cross-infection among patients. For reusable medical devices, cleaning using mechanical brushes and detergent may not be sufficient to completely remove the infectious contaminants from the surfaces. This study evaluates the role of fluid flow-induced shear stress in the detachment and removal of contaminants from device surfaces. A stainless-steel test coupon, acting as a surrogate for a device surface, was coated with artificial clot of varying mass. The test coupon was exposed to fluid shear stress both with and without an enzymatic detergent. The relationship between clot removal quantity and the applied shear stress was obtained for multiple clot masses. Our results showed that fluid shear increased the effectiveness of the cleaning process. In the absence of flow, soaking the clot surface in the enzymatic detergent removed 67%, 77%, and 95% of the clot for 16 mg, 6.8 mg, and 1 mg initial masses, respectively. In the presence of fluid shear (0.3 Pa for 5 min), approximately 85%, 97%, and 99% of the clot was removed from the surface. The clot mass removed followed a linear relationship (R2 = 0.98) versus the applied fluid shear stress. This study showed that different cleaning processes such as fluid shear and detergent action contribute to the soil removal process. This method could be used to evaluate cleaning protocols for minimizing contaminant residue after the reprocessing of medical devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1132-1140, 2019.


Assuntos
Estresse Mecânico , Trombose , Humanos , Propriedades de Superfície
17.
J Acoust Soc Am ; 124(3): 1790-802, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19045669

RESUMO

Two techniques are presented for noninvasively determining the intensity field of high-intensity focused ultrasound transducers in a liquid medium. The techniques are based upon the streaming velocity induced in the liquid by the absorbed ultrasound beam. The approaches are similar to an iterative streaming method previously reported, but the present approaches are "direct:" The differential operations of the Navier-Stokes equations are performed directly upon the experimentally measured streaming velocity, rather than through an iterative approach that minimizes the difference between a theoretical estimate of the streaming velocity and the one measured experimentally. As such, the direct methods are much faster than the iterative technique. The price paid for the increase in speed is smaller spatial coverage; the direct techniques are applicable only where accurate streaming velocity is available. Comparisons performed in the range 100-1000 W/cm(2) focal intensity showed differences between the direct methods and the iterative streaming technique to be less than 20%. Similar differences were observed in low-power comparisons with hydrophone measurements.


Assuntos
Acústica , Modelos Teóricos , Ultrassom , Acústica/instrumentação , Algoritmos , Análise de Elementos Finitos , Movimento (Física) , Distribuição Normal , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Transdutores , Viscosidade
18.
J Acoust Soc Am ; 123(3): 1706-19, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18345858

RESUMO

A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.


Assuntos
Acústica/instrumentação , Modelos Teóricos , Transdutores , Ultrassom , Absorção , Humanos
19.
Math Med Biol ; 35(1): 1-23, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-27780877

RESUMO

Respiratory protective devices (RPDs) are critical for reducing the spread of infection via inhalable droplets. In determining the type of RPD to deploy, it is important to know the reduction in the infection rate that the RPD enables for the given pathogen and population. This paper extends a previously developed susceptible-infected-recovered (SIR) epidemic model to analyse the effect of a protection strategy. An approximate solution to the modified SIR equations, which compares well with a full numerical solution to the equations, was used to derive a simple threshold equation for predicting when growth of the infected population will occur for a given protection strategy. The threshold equation is cast in terms of a generalized reproduction number, which contains the characteristics of the RPDs deployed by the susceptible and infected populations, as well as the degree of compliance in wearing the equipment by both populations. An example calculation showed that with 50% of the susceptible population deploying RPDs that transmit 15% of pathogens, and an unprotected infected population, an otherwise growing infection rate can be converted to one that decays. When the infected population deploys RPDs, the transmission rate for the RPDs worn by the susceptible population can be higher.


Assuntos
Epidemias , Inalação , Modelos Teóricos , Equipamentos de Proteção , Infecções Respiratórias/prevenção & controle , Humanos , Risco
20.
Cardiovasc Eng Technol ; 9(4): 623-640, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291585

RESUMO

PURPOSE: A credible computational fluid dynamics (CFD) model can play a meaningful role in evaluating the safety and performance of medical devices. A key step towards establishing model credibility is to first validate CFD models with benchmark experimental datasets to minimize model-form errors before applying the credibility assessment process to more complex medical devices. However, validation studies to establish benchmark datasets can be cost prohibitive and difficult to perform. The goal of this initiative sponsored by the U.S. Food and Drug Administration is to generate validation data for a simplified centrifugal pump that mimics blood flow characteristics commonly observed in ventricular assist devices. METHODS: The centrifugal blood pump model was made from clear acrylic and included an impeller, with four equally spaced, straight blades, supported by mechanical bearings. Particle Image Velocimetry (PIV) measurements were performed at several locations throughout the pump by three independent laboratories. A standard protocol was developed for the experiments to ensure that the flow conditions were comparable and to minimize systematic errors during PIV image acquisition and processing. Velocity fields were extracted at the pump entrance, blade passage area, back gap region, and at the outlet diffuser regions. A Newtonian blood analog fluid composed of sodium iodide, glycerin, and water was used as the working fluid. Velocity measurements were made for six different pump flow conditions, with the blood-equivalent flow rate ranging between 2.5 and 7 L/min for pump speeds of 2500 and 3500 rpm. RESULTS: Mean intra- and inter-laboratory variabilities in velocity were ~ 10% at the majority of the measurement locations inside the pump. However, the inter-laboratory variability increased to more than ~ 30% in the exit diffuser region. The variability between the three laboratories for the peak velocity magnitude in the diffuser region ranged from 5 to 25%. The bulk velocity field near the impeller changed proportionally with the rotational speed but was relatively unaffected by the pump flow rate. In contrast, flow in the exit diffuser region was sensitive to both the flow rate and the rotational speed. Specifically, at 3500 rpm, the exit jet tilted toward the inner wall of the diffuser at a flow rate of 2.5 L/min, but the jet tilted towards the outer wall when the flow rate was 7 L/min. CONCLUSIONS: Inter-laboratory experimental mean velocity data (and the corresponding variance) were obtained for the FDA pump model and are available for download at https://nciphub.org/wiki/FDA_CFD . Experimental datasets from the inter-laboratory characterization of benchmark flow models, including the blood pump model presented herein and our previous nozzle model, can be used for validating future CFD studies and to collaboratively develop guidelines on best practices for verification, validation, uncertainty quantification, and credibility assessment of CFD simulations in the evaluation of medical devices (e.g. ASME V&V 40 standards working group).


Assuntos
Simulação por Computador , Insuficiência Cardíaca/terapia , Coração Auxiliar , Hemodinâmica , Ensaio de Proficiência Laboratorial/normas , Teste de Materiais/normas , Modelos Cardiovasculares , Função Ventricular , Benchmarking , Velocidade do Fluxo Sanguíneo , Aprovação de Equipamentos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Hidrodinâmica , Desenho de Prótese , Fluxo Pulsátil , Reprodutibilidade dos Testes , Reologia , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa