Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cogn Affect Behav Neurosci ; 13(2): 225-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23263840

RESUMO

Pavlovian conditioning requires the convergence and simultaneous activation of neural circuitry that supports conditioned stimulus (CS) and unconditioned stimulus (US) processes. However, in trace conditioning, the CS and US are separated by a period of time called the trace interval, and thus do not overlap. Therefore, determining brain regions that support associative learning by maintaining a CS representation during the trace interval is an important issue for conditioning research. Prior functional magnetic resonance imaging (fMRI) research has identified brain regions that support trace-conditioning processes. However, relatively little is known about whether this activity is specific to the trace CS, the trace interval, or both periods of time. The present study was designed to disentangle the hemodynamic response produced by the trace CS from that associated with the trace interval, in order to identify learning-related activation during these distinct components of a trace-conditioning trial. Trace-conditioned activity was observed within dorsomedial prefrontal cortex (PFC), dorsolateral PFC, insula, inferior parietal lobule (IPL), and posterior cingulate (PCC). Each of these regions showed learning-related activity during the trace CS, while trace-interval activity was only observed within a subset of these areas (i.e., dorsomedial PFC, PCC, right dorsolateral PFC, right IPL, right superior/middle temporal gyrus, and bilateral insula). Trace-interval activity was greater in right than in left dorsolateral PFC, IPL, and superior/middle temporal gyrus. These findings indicate that components of the prefrontal, cingulate, insular, and parietal cortices support trace-interval processes, as well as suggesting that a right-lateralized fronto-parietal circuit may play a unique role in trace conditioning.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Condicionamento Clássico/fisiologia , Medo/psicologia , Lateralidade Funcional/fisiologia , Estimulação Acústica , Adulto , Análise de Variância , Córtex Cerebral/irrigação sanguínea , Feminino , Resposta Galvânica da Pele/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Psicofísica , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa