RESUMO
The vaginal mucosa is dominated by Gram positive, rod shaped lactobacilli which serve as a natural barrier against infection. In both healthy- and bacterial vaginosis (BV)-infected women Lactobacillus crispatus and Lactobacillus jensenii have been found to be the predominant Lactobacillus species. Many studies have been conducted to assess factors influencing lactobacilli dominance in the vaginal microbiome. In the present study two plasmids, pLc4 and pLc17, isolated from vaginal Lactobacillus strains of both healthy and BV-infected women were characterized. The smaller plasmid, pLc4 (4224â¯bp), was detected in both L. crispatus and L. jensenii strains, while pLc17 was only detected in L. crispatus. Based on its nucleotide sequence pLc4 appears highly novel, with its replication protein having 44% identity to the replication initiation protein of pSMQ173b_03. Phylogenetic analysis with other Rolling Circle Replication plasmids confirmed that pLc4 shows a low degree of similarity to these plasmids. Plasmid pLc17 (16,663â¯bp) appears to carry both a RCR replicon and a theta replicon, which is rare in naturally occurring plasmids. pLc4 was maintained at a high copy number of 29, while pLc17 appears to be a medium copy number plasmid maintained at 11 copies per chromosome. While sequence analysis is a valuable tool to study cryptic plasmids, further function-based analysis will be required in order to fully elucidate the role of these plasmids within the vaginal milieu.