Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Chem Chem Phys ; 24(39): 24105-24115, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178251

RESUMO

Iodine has been shown to act as a good electrocatalyst for metal digestion in deep eutectic solvents (DESs) but little is known about its speciation or reactivity in these high chloride containing media. Extended X-ray absorption fine structure (EXAFS) spectroscopy measurements were made at the iodine K-edge in a range of DESs with different glycolic or acidic hydrogen bond donors (HBDs), along with examining the effect of iodine concentration between 0.01 and 0.5 mol dm-3. Three groups of speciation were detected: mixed I2Cl-/I3- (glycol and lactic acid systems), mixed I3-/I2 (oxalic acid and urea systems), and singular I3- (levulinic acid system). UV-vis spectroscopy was used to confirm the speciation. Electrochemistry showed that iodine redox behaviour was unaffected by the changing speciation. Leaching data showed that metal oxidation was related not only to changing iodine speciation, but also the reactivity and coordination ability of the HBD.


Assuntos
Solventes Eutéticos Profundos , Iodo , Cloretos , Glicóis , Ácido Láctico , Ácido Oxálico , Solventes/química , Ureia/química
2.
J Chem Phys ; 153(11): 115101, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962355

RESUMO

Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle. As a cysteine protease, PLpro is rich in cysteines and histidines, and their protonation/deprotonation modulates catalysis and conformational plasticity. Here, we report the pKa calculations and assessment of the proton-coupled conformational dynamics of SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV PLpros using the recently developed graphical processing unit (GPU)-accelerated implicit-solvent continuous constant pH molecular dynamics method with a new asynchronous replica-exchange scheme, which allows computation on a single GPU card. The calculated pKa's support the catalytic roles of the Cys-His-Asp triad. We also found that several residues can switch protonation states at physiological pH among which is C270/271 located on the flexible blocking loop 2 (BL2) of SARS-CoV-2/CoV PLpro. Simulations revealed that the BL2 can open and close depending on the protonation state of C271/270, consistent with the most recent crystal structure evidence. Interestingly, despite the lack of an analogous cysteine, BL2 in MERS-CoV PLpro is also very flexible, challenging a current hypothesis. These findings are supported by the all-atom fixed-charge simulations and provide a starting point for more detailed studies to assist the structure-based design of broad-spectrum inhibitors against CoV PLpros.


Assuntos
Antivirais/farmacologia , Betacoronavirus/enzimologia , Desenho de Fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Simulação de Dinâmica Molecular , Papaína/química , Papaína/metabolismo , Prótons , Sequência de Aminoácidos , Histidina , Concentração de Íons de Hidrogênio , Papaína/antagonistas & inibidores , Domínios Proteicos , SARS-CoV-2
3.
J Chem Inf Model ; 59(11): 4821-4832, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31661616

RESUMO

We present a GPU implementation of the continuous constant pH molecular dynamics (CpHMD) based on the most recent generalized Born implicit-solvent model in the pmemd engine of the Amber molecular dynamics package. To test the accuracy of the tool for rapid pKa predictions, a series of 2 ns single-pH simulations were performed for over 120 titratable residues in 10 benchmark proteins that were previously used to test the various continuous CpHMD methods. The calculated pKa's showed a root-mean-square deviation of 0.80 and correlation coefficient of 0.83 with respect to experiment. Also, 90% of the pKa's were converged with estimated errors below 0.1 pH units. Surprisingly, this level of accuracy is similar to our previous replica-exchange simulations with 2 ns per replica and an exchange attempt frequency of 2 ps-1 (Huang, Harris, and Shen J. Chem. Inf. Model. 2018 , 58 , 1372 - 1383 ). Interestingly, for the linked titration sites in two enzymes, although residue-specific protonation state sampling in the single-pH simulations was not converged within 2 ns, the protonation fraction of the linked residues appeared to be largely converged, and the experimental macroscopic pKa values were reproduced to within 1 pH unit. Comparison with replica-exchange simulations with different exchange attempt frequencies showed that the splitting between the two macroscopic pKa's is underestimated with frequent exchange attempts such as 2 ps-1, while single-pH simulations overestimate the splitting. The same trend is seen for the single-pH vs replica-exchange simulations of a hydrogen-bonded aspartyl dyad in a much larger protein. A 2 ns single-pH simulation of a 400-residue protein takes about 1 h on a single NVIDIA GeForce RTX 2080 graphics card, which is over 1000 times faster than a CpHMD run on a single CPU core of a high-performance computing cluster node. Thus, we envision that GPU-accelerated continuous CpHMD may be used in routine pKa predictions for a variety of applications, from assisting MD simulations with protonation state assignment to offering pH-dependent corrections of binding free energies and identifying reactive hot spots for covalent drug design.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Animais , Proteínas de Bactérias/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Proteica , Prótons , Software , Solventes/química , Termodinâmica
4.
J Chem Inf Model ; 58(7): 1372-1383, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29949356

RESUMO

Solution pH plays an important role in structure and dynamics of biomolecular systems; however, pH effects cannot be accurately accounted for in conventional molecular dynamics simulations based on fixed protonation states. Continuous constant pH molecular dynamics (CpHMD) based on the λ-dynamics framework calculates protonation states on the fly during dynamical simulation at a specified pH condition. Here we report the CPU-based implementation of the CpHMD method based on the GBNeck2 generalized Born (GB) implicit-solvent model in the pmemd engine of the Amber molecular dynamics package. The performance of the method was tested using pH replica-exchange titration simulations of Asp, Glu and His side chains in 4 miniproteins and 7 enzymes with experimentally known p Ka's, some of which are significantly shifted from the model values. The added computational cost due to CpHMD titration ranges from 11 to 33% for the data set and scales roughly linearly as the ratio between the titrable sites and number of solute atoms. Comparison of the experimental and calculated p Ka's using 2 ns per replica sampling yielded a mean unsigned error of 0.70, a root-mean-squared error of 0.91, and a linear correlation coefficient of 0.79. Though this level of accuracy is similar to the GBSW-based CpHMD in CHARMM, in contrast to the latter, the current implementation was able to reproduce the experimental orders of the p Ka's of the coupled carboxylic dyads. We quantified the sampling errors, which revealed that prolonged simulation is needed to converge p Ka's of several titratable groups involved in salt-bridge-like interactions or deeply buried in the protein interior. Our benchmark data demonstrate that GBNeck2-CpHMD is an attractive tool for protein p Ka predictions.


Assuntos
Simulação de Dinâmica Molecular , Software , Solventes/química , Aminoácidos/química , Benchmarking , Enzimas/química , Concentração de Íons de Hidrogênio , Oligopeptídeos/química , Peptídeos/química , Conformação Proteica , Termodinâmica
5.
J Comput Chem ; 38(15): 1198-1208, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28008630

RESUMO

Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of ß-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. ß-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making ß-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the ß-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc.


Assuntos
Dipeptídeos/química , Termodinâmica , Água/química , beta-Ciclodextrinas/química , Conformação Molecular , Simulação de Dinâmica Molecular , Solventes/química
6.
Phys Chem Chem Phys ; 19(4): 3219-3231, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28083577

RESUMO

Organic and inorganic additives are often added to nickel electroplating solutions to improve surface finish, reduce roughness and promote uniform surface morphology of the coatings. Such additives are usually small molecules and often referred to as brighteners or levellers. However, there have been limited investigations into the effect of such additives on electrodeposition from ionic liquids (ILs) and deep eutectic solvents (DESs). Here we study the effect of four additives on electrolytic nickel plating from an ethyleneglycol based DES; these are nicotinic acid (NA), methylnicotinate (MN), 5,5-dimethylhydantoin (DMH) and boric acid (BA). The additives show limited influence on the bulk Ni(ii) speciation but have significant influence on the electrochemical behaviour of Ni deposition. Small concentrations (ca. 15 mM) of NA and MN show inhibition of Ni(ii) reduction whereas high concentrations of DMH and BA are required for a modest difference in behaviour from the additive free system. NA and MN also show that they significantly alter the nucleation and growth mechanism when compared to the additive free system and those with DMH and BA. Each of the additive systems had the effect of producing brighter and flatter bulk electrodeposits with increased coating hardness but XRD shows that NA and MN direct crystal growth to the [111] orientation whereas DMH and BA direct crystal growth to the [220] orientation.

7.
Phys Chem Chem Phys ; 19(2): 1686, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27973624

RESUMO

Correction for 'Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR' by Carmine D'Agostino et al., Phys. Chem. Chem. Phys., 2015, 17, 15297-15304.

8.
Proc Natl Acad Sci U S A ; 111(41): 14681-6, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25258413

RESUMO

Inserting an uncharged van der Waals (vdw) cavity into water disrupts the distribution of water and creates attractive dispersion interactions between the solvent and solute. This free-energy change is the hydrophobic solvation energy (ΔG(vdw)). Frequently, it is assumed to be linear in the solvent-accessible surface area, with a positive surface tension (γ) that is independent of the properties of the molecule. However, we found that γ for a set of alkanes differed from that for four configurations of decaalanine, and γ = -5 was negative for the decaalanines. These findings conflict with the notion that ΔG(vdw) favors smaller A. We broke ΔG(vdw) into the free energy required to exclude water from the vdw cavity (ΔG(rep)) and the free energy of forming the attractive interactions between the solute and solvent (ΔG(att)) and found that γ < 0 for the decaalanines because -γ(att) > γ(rep) and γ(att) < 0. Additionally, γ(att) and γ(rep) for the alkanes differed from those for the decaalanines, implying that none of ΔG(att), ΔG(rep), and ΔG(vdw) can be computed with a constant surface tension. We also showed that ΔG(att) could not be computed from either the initial or final water distributions, implying that this quantity is more difficult to compute than is sometimes assumed. Finally, we showed that each atom's contribution to γ(rep) depended on multibody interactions with its surrounding atoms, implying that these contributions are not additive. These findings call into question some hydrophobic models.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Solventes/química , Modelos Lineares , Termodinâmica
9.
Biophys J ; 111(4): 756-767, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27558719

RESUMO

Oligoglycine is a backbone mimic for all proteins and is prevalent in the sequences of intrinsically disordered proteins. We have computed the absolute chemical potential of glycine oligomers at infinite dilution by simulation with the CHARMM36 and Amber ff12SB force fields. We performed a thermodynamic decomposition of the solvation free energy (ΔG(sol)) of Gly2-5 into enthalpic (ΔH(sol)) and entropic (ΔS(sol)) components as well as their van der Waals and electrostatic contributions. Gly2-5 was either constrained to a rigid/extended conformation or allowed to be completely flexible during simulations to assess the effects of flexibility on these thermodynamic quantities. For both rigid and flexible oligoglycine models, the decrease in ΔG(sol) with chain length is enthalpically driven with only weak entropic compensation. However, the apparent rates of decrease of ΔG(sol), ΔH(sol), ΔS(sol), and their elec and vdw components differ for the rigid and flexible models. Thus, we find solvation entropy does not drive aggregation for this system and may not explain the collapse of long oligoglycines. Additionally, both force fields yield very similar thermodynamic scaling relationships with respect to chain length despite both force fields generating different conformational ensembles of various oligoglycine chains.


Assuntos
Entropia , Peptídeos/química , Solventes/química
10.
J Comput Chem ; 36(4): 235-43, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25430617

RESUMO

The capabilities of an adaptive Cartesian grid (ACG)-based Poisson-Boltzmann (PB) solver (CPB) are demonstrated. CPB solves various PB equations with an ACG, built from a hierarchical octree decomposition of the computational domain. This procedure decreases the number of points required, thereby reducing computational demands. Inside the molecule, CPB solves for the reaction-field component (ϕrf ) of the electrostatic potential (ϕ), eliminating the charge-induced singularities in ϕ. CPB can also use a least-squares reconstruction method to improve estimates of ϕ at the molecular surface. All surfaces, which include solvent excluded, Gaussians, and others, are created analytically, eliminating errors associated with triangulated surfaces. These features allow CPB to produce detailed surface maps of ϕ and compute polar solvation and binding free energies for large biomolecular assemblies, such as ribosomes and viruses, with reduced computational demands compared to other Poisson-Boltzmann equation solvers. The reader is referred to http://www.continuum-dynamics.com/solution-mm.html for how to obtain the CPB software.


Assuntos
Algoritmos , Simulação por Computador , Proteínas/química , Eletricidade Estática , Modelos Moleculares , Solventes/química , Distribuições Estatísticas , Termodinâmica
11.
Phys Chem Chem Phys ; 17(23): 15297-15304, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994171

RESUMO

Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.

12.
Phys Chem Chem Phys ; 16(28): 14675-81, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24916113

RESUMO

The electrodeposition of aluminium is demonstrated using a eutectic mixture of aluminium chloride and urea. The mixture is shown to be conducting through the formation of both cationic ([AlCl2·urean](+)) and anionic (AlCl4(-)) species and electrodeposition is achieved through the cationic species. The use of a biphasic system with the ionic liquid and a protective hydrocarbon layer allows metal deposition to be carried out in an environment with ambient moisture without the need for a glove box. A direct comparison is made between the AlCl3:urea and imidazolium chloride:AlCl3 systems and the differences in speciation and mass transport manifest themselves in different deposit morphologies. Brighteners which work in the chloroaluminate system such as toluene and LiCl are shown to be ineffective in the urea based system and the reasons for these differences are ascribed to the mechanism of the anodic reaction which is rate limiting.

13.
Phys Chem Chem Phys ; 16(19): 9047-55, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695874

RESUMO

The electrodeposition of chromium is a technologically vital process, which is principally carried out using aqueous chromic acid. In the current study, it is shown that eutectic mixtures of urea and hydrated chromium(III) chloride provide a liquid which reduces the toxicological issues associated with the current aqueous Cr(VI) electroplating solution. Using EXAFS, mass spectrometry and UV-Vis spectroscopy, it is shown that chromium is present predominantly as a cationic species. Conductivities are higher than for most comparable ionic liquids. It is shown that the electrodeposition of chromium is electrochemically reversible, with a current efficiency much higher than in aqueous electrolytes. Surface tension and density measurements indicate that hole theory is a valid model to describe transport properties in these liquids. Bulk Cr deposits are not macrocrystalline but they are generally crack-free. The deposits have a hardness of 600 ± 10 Vickers and, as such, are comparable to deposits from aqueous systems.

14.
J Chem Phys ; 140(7): 075102, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24559370

RESUMO

Experimental results have demonstrated that the numbers of counterions surrounding nucleic acids differ from those predicted by the nonlinear Poisson-Boltzmann equation, NLPBE. Some studies have fit these data against the ion size in the size-modified Poisson-Boltzmann equation, SMPBE, but the present study demonstrates that other parameters, such as the Stern layer thickness and the molecular surface definition, can change the number of bound ions by amounts comparable to varying the ion size. These parameters will therefore have to be fit simultaneously against experimental data. In addition, the data presented here demonstrate that the derivative, SK, of the electrostatic binding free energy, ΔGel, with respect to the logarithm of the salt concentration is sensitive to these parameters, and experimental measurements of SK could be used to parameterize the model. However, although better values for the Stern layer thickness and ion size and better molecular surface definitions could improve the model's predictions of the numbers of ions around biomolecules and SK, ΔGel itself is more sensitive to parameters, such as the interior dielectric constant, which in turn do not significantly affect the distributions of ions around biomolecules. Therefore, improved estimates of the ion size and Stern layer thickness to use in the SMPBE will not necessarily improve the model's predictions of ΔGel.


Assuntos
Ácidos Nucleicos/química , Íons/química , Modelos Moleculares , Sais/química , Eletricidade Estática , Termodinâmica
15.
J Chem Phys ; 141(22): 22D525, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494796

RESUMO

Protein collapse during folding is often assumed to be driven by a hydrophobic solvation energy (ΔGvdw) that scales linearly with solvent-accessible surface area (A). In a previous study, we argued that ΔGvdw, as well as its attractive (ΔGatt) and repulsive (ΔGrep) components, was not simply a linear function of A. We found that the surface tensions, γrep, γatt, and γvdw, gotten from ΔGrep, ΔGatt, and ΔGvdw against A for four configurations of deca-alanine differed from those obtained for a set of alkanes. In the present study, we extend our analysis to fifty decaglycine structures and atomic decompositions. We find that different configurations of decaglycine generate different estimates of γrep. Additionally, we considered the reconstruction of the solvation free energy from scaling the free energy of solvation of each atom type, free in solution. The free energy of the isolated atoms, scaled by the inverse surface area the atom would expose in the molecule does not reproduce the γrep for the intact decaglycines. Finally, γatt for the decaglycine conformations is much larger in magnitude than those for deca-alanine or the alkanes, leading to large negative values of γvdw (-74 and -56 cal/mol/Å(2) for CHARMM27 and AMBER ff12sb force fields, respectively). These findings imply that ΔGvdw favors extended rather than compact structures for decaglycine. We find that ΔGrep and ΔGvdw have complicated dependencies on multibody correlations between solute atoms, on the geometry of the molecular surface, and on the chemical identities of the atoms.


Assuntos
Oligopeptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Dobramento de Proteína , Termodinâmica
16.
Cell Metab ; 36(7): 1504-1520.e9, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38876105

RESUMO

Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.


Assuntos
Mitocôndrias , Purinas , Humanos , Purinas/metabolismo , Purinas/farmacologia , Mitocôndrias/metabolismo , Transporte de Elétrons , Hipoxantina Fosforribosiltransferase/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Via de Pentose Fosfato , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Animais , Transporte Biológico
17.
Artigo em Inglês | MEDLINE | ID: mdl-37709555

RESUMO

Electron transport chain (ETC) disorders are a group of rare, multisystem diseases caused by impaired oxidative phosphorylation and energy production. Deficiencies in complex III (CIII), also known as ubiquinol-cytochrome c reductase, are particularly rare in humans. Ubiquinol-cytochrome c reductase core protein 2 (UQCRC2) encodes a subunit of CIII that plays a crucial role in dimerization. Several pathogenic UQCRC2 variants have been identified in patients presenting with metabolic abnormalities that include lactic acidosis, hyperammonemia, hypoglycemia, and organic aciduria. Almost all previously reported UQCRC2-deficient patients exhibited neurodevelopmental involvement, including developmental delays and structural brain anomalies. Here, we describe a girl who presented at 3 yr of age with lactic acidosis, hyperammonemia, and hypoglycemia but has not shown any evidence of neurodevelopmental dysfunction by age 15. Whole-exome sequencing revealed compound heterozygosity for two novel variants in UQCRC2: c.1189G>A; p.Gly397Arg and c.437T>C; p.Phe146Ser. Here, we discuss the patient's clinical presentation and the likely pathogenicity of these two missense variants.


Assuntos
Acidose Láctica , Hiperamonemia , Hipoglicemia , Humanos , Feminino , Adolescente , Complexo III da Cadeia de Transporte de Elétrons , Mutação de Sentido Incorreto
18.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214913

RESUMO

Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.

19.
Phys Chem Chem Phys ; 13(48): 21383-91, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22033601

RESUMO

Deep Eutectic Solvents (DESs) are a novel class of solvents with potential industrial applications in separation processes, chemical reactions, metal recovery and metal finishing processes such as electrodeposition and electropolishing. Macroscopic physical properties such as viscosity, conductivity, eutectic composition and surface tension are already available for several DESs, but the microscopic transport properties for this class of compounds are not well understood and the literature lacks experimental data that could give a better insight into the understanding of such properties. This paper presents the first pulsed field gradient nuclear magnetic resonance (PFG-NMR) study of DESs. Several choline chloride based DESs were chosen as experimental samples, each of them with a different associated hydrogen bond donor. The molecular equilibrium self-diffusion coefficient of both the choline cation and hydrogen bond donor was probed using a standard stimulated echo PFG-NMR pulse sequence. It is shown that the increasing temperature leads to a weaker interaction between the choline cation and the correspondent hydrogen bond donor. The self-diffusion coefficients of the samples obey an Arrhenius law temperature-dependence, with values of self-diffusivity in the range of [10(-10)-10(-13) m(2) s(-1)]. In addition, the results also highlight that the molecular structure of the hydrogen bond donor can greatly affect the mobility of the whole system. While for ethaline, glyceline and reline the choline cation diffuses slower than the associated hydrogen bond donor, reflecting the trend of molecular size and molecular weight, the opposite behaviour is observed for maline, in which the hydrogen bond donor, i.e. malonic acid, diffuses slower than the choline cation, with self-diffusion coefficients values of the order of 10(-13) m(2) s(-1) at room temperature, which are remarkably low values for a liquid. This is believed to be due to the formation of extensive dimer chains between malonic acid molecules, which restricts the mobility of the whole system at low temperature (<30 °C), with malonic acid and choline chloride having almost identical diffusivity values. Diffusion and viscosity data were combined together to gain insights into the diffusion mechanism, which was found to be the same as for ionic liquids with discrete anions.

20.
Biophys J ; 99(3): 879-86, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20682266

RESUMO

Proper modeling of nonspecific salt-mediated electrostatic interactions is essential to understanding the binding of charged ligands to nucleic acids. Because the linear Poisson-Boltzmann equation (PBE) and the more approximate generalized Born approach are applied routinely to nucleic acids and their interactions with charged ligands, the reliability of these methods is examined vis-à-vis an efficient nonlinear PBE method. For moderate salt concentrations, the negative derivative, SK(pred), of the electrostatic binding free energy, DeltaG(el), with respect to the logarithm of the 1:1 salt concentration, [M(+)], for 33 cationic minor groove drugs binding to AT-rich DNA sequences is shown to be consistently negative and virtually constant over the salt range considered (0.1-0.4 M NaCl). The magnitude of SK(pred) is approximately equal to the charge on the drug, as predicted by counterion condensation theory (CCT) and observed in thermodynamic binding studies. The linear PBE is shown to overestimate the magnitude of SK(pred), whereas the nonlinear PBE closely matches the experimental results. The PBE predictions of SK(pred) were not correlated with DeltaG(el) in the presence of a dielectric discontinuity, as would be expected from the CCT. Because this correlation does not hold, parameterizing the PBE predictions of DeltaG(el) against the reported experimental data is not possible. Moreover, the common practice of extracting the electrostatic and nonelectrostatic contributions to the binding of charged ligands to biopolyelectrolytes based on the simple relation between experimental SK values and the electrostatic binding free energy that is based on CCT is called into question by the results presented here. Although the rigid-docking nonlinear PB calculations provide reliable predictions of SK(pred), at least for the charged ligand-nucleic acid complexes studied here, accurate estimates of DeltaG(el) will require further development in theoretical and experimental approaches.


Assuntos
Cátions/química , DNA/química , DNA/metabolismo , Modelos Químicos , Conformação de Ácido Nucleico , Preparações Farmacêuticas/metabolismo , Dinâmica não Linear , Distribuição de Poisson , Sais/química , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa