Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 118(9): 3012-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18677407

RESUMO

Inflammation plays a critical role in the development of cardiovascular diseases. Infiltration of leukocytes to sites of injury requires their exit from the blood and migration across basement membrane; this process has been postulated to require remodeling of the ECM. Plasminogen (Plg) is a protease that binds to the ECM and, upon conversion to plasmin, degrades multiple ECM proteins. In addition, plasmin directly activates MMPs. Here, we used Plg(-/-) mice to investigate the role of Plg in inflammatory leukocyte migration. After induction of peritonitis by thioglycollate injection, we found that Plg(-/-) mice displayed diminished macrophage trans-ECM migration and decreased MMP-9 activation. Furthermore, injection of the active form of MMP-9 in Plg(-/-) mice rescued macrophage migration in this model. We used periaortic application of CaCl2 to induce abdominal aortic aneurysm (AAA) and found that Plg(-/-) mice displayed reduced macrophage infiltration and were protected from aneurysm formation. Administration of active MMP-9 to Plg(-/-) mice promoted macrophage infiltration and the development of AAA. These data suggest that Plg regulates macrophage migration in inflammation via activation of MMP-9, which, in turn, regulates the ability of the cells to migrate across ECM. Thus, targeting the Plg/MMP-9 pathway may be an attractive approach to regulate inflammatory responses and AAA development.


Assuntos
Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Plasminogênio/metabolismo , Animais , Aneurisma da Aorta Abdominal/genética , Movimento Celular , Colágeno/química , Colágeno/metabolismo , Combinação de Medicamentos , Ativação Enzimática , Heterozigoto , Inflamação , Laminina/química , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteoglicanas/química
2.
Mamm Genome ; 21(7-8): 337-49, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20700597

RESUMO

Two overlapping quantitative trait loci (QTLs) for clot stability, Hmtb8 and Hmtb9, were identified on mouse chromosome 17 in an F2 intercross derived from C57BL/6J (B6) and B6-Chr17(A/J) (B6-Chr17) mouse strains. The intervals were in synteny with a QTL for thrombotic susceptibility on chromosome 18 in a human study, and there were 23 homologs between mouse and human. The objective of this study was to determine whether any of these genes in the syntenic region are likely candidates as modifiers for clot stability. Seven genes, Twsg1, Zfp161, Dlgap1, Ralbp1, Myom1, Rab31, and Emilin2, of the 23 genes with single nucleotide polymorphisms (SNPs) in the mRNA-UTR had differential expression in B6 and A/J mice. Dlgap1, Ralbp1, Myom1, and Emilin2 also had nonsynonymous SNPs. In addition, two other genes had nonsynonymous SNPs, Lama1 and Ndc80. Of these nine candidate genes, Emilin2 was selected for further analysis since other EMILIN (Elastin Microfibril Interface Located Protein) proteins have known functions in vascular structure and coagulation. Differences were found between B6 and A/J mice in vessel wall architecture and EMILIN2 protein in plasma, carotid vessel wall, and thrombi formed after ferric chloride injury. In B6-Chr17(A/J) mice both clot stability and Emilin2 mRNA expression were higher compared to those in B6 and A/J mice, suggesting the exposure of epistatic interactions. Although other homologous genes in the QTL region cannot be ruled out as causative genes, further investigation of Emilin2 as a candidate gene for thrombosis susceptibility is warranted.


Assuntos
Cromossomos de Mamíferos/genética , Modificador do Efeito Epidemiológico , Genes , Camundongos/genética , Trombose/genética , Animais , Coagulação Sanguínea/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Homologia de Sequência
3.
Exp Biol Med (Maywood) ; 234(1): 28-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18997104

RESUMO

Structural similarities between apolipoprotein(a) (apo(a)), the unique apoprotein of lipoprotein(a), and plasminogen, the zymogen of plasmin, can interfere with functions of plasmin (ogen) in vitro. The purpose of this study was to evaluate the role of apo(a) in inflammation in vivo using apo(a) transgenic mice and to determine if effects are plasminogen-dependent using backgrounds that are either plasminogen-replete or plasminogen-deficient. After administration of peritoneal inflammatory stimuli, thioglycollate, bioimplants or lipopolysaccharide, the number of responding peritoneal neutrophils and macrophages were quantified. Apo(a), in either wild-type or plasminogen deficient backgrounds, inhibited neutrophil recruitment but had no effect on plasminogen-dependent macrophage recruitment. Macrophage-inflammatory protein-2, a neutrophil chemokine, was reduced in apo(a) mice, and injection of this chemokine prior to thioglycollate restored neutrophil recruitment in apo(a) transgenic mice. In the lipopolysaccharide model, mice with apo(a), unlike mice without apo(a), did not increase neutrophil recruitment in response to the stimulus. In the bioimplant model, neutrophil recruitment and neutrophil cytokines were reduced in apo(a)tg mice but only in a plasminogen-deficient background. These results indicate for the first time that apo(a), independent of plasminogen interaction, inhibits neutrophil recruitment in vivo in diverse peritoneal inflammatory models. Hence, apo(a) may function as a cell specific suppressor of the inflammatory response.


Assuntos
Apolipoproteínas A/fisiologia , Inflamação/fisiopatologia , Plasminogênio/deficiência , Animais , Apolipoproteínas A/genética , Apolipoproteínas A/farmacologia , Quimiocina CXCL2/sangue , Citocinas/fisiologia , Inflamação/genética , Leucócitos/efeitos dos fármacos , Leucócitos/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/fisiologia
4.
BMC Blood Disord ; 6: 6, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17022820

RESUMO

BACKGROUND: Thrombosis is the fatal and disabling consequence of cardiovascular diseases, the leading cause of mortality and morbidity in Western countries. Two inbred mouse strains, C57BL/6J and A/J, have marked differences in susceptibility to obesity, atherosclerosis, and vessel remodeling. However, it is unclear how these diverse genetic backgrounds influence pathways known to regulate thrombosis and hemostasis. The objective of this study was to evaluate thrombosis and hemostasis in these two inbred strains and determine the phenotypic response of A/J chromosomes in the C57BL/6J background. METHODS: A/J and C57Bl/6J mice were evaluated for differences in thrombosis and hemostasis. A thrombus was induced in the carotid artery by application of the exposed carotid to ferric chloride and blood flow measured until the vessel occluded. Bleeding and rebleeding times, as surrogate markers for thrombosis and hemostasis, were determined after clipping the tail and placing in warm saline. Twenty-one chromosome substitution strains, A/J chromosomes in a C57BL/6J background, were screened for response to the tail bleeding assay. RESULTS: Thrombus occlusion time was markedly decreased in the A/J mice compared to C57BL/6J mice. Tail bleeding time was similar in the two strains, but rebleeding time was markedly increased in the A/J mice compared to C57BL/6J mice. Coagulation times and tail morphology were similar, but tail collagen content was higher in A/J than C57BL/6J mice. Three chromosome substitution strains, B6-Chr5A/J, B6-Chr11A/J, and B6-Chr17A/J, were identified with increased rebleeding time, a phenotype similar to A/J mice. Mice heterosomic for chromosomes 5 or 17 had rebleeding times similar to C57BL/6J mice, but when these two chromosome substitution strains, B6-Chr5A/J and B6-Chr17A/J, were crossed, the A/J phenotype was restored in these doubly heterosomic progeny. CONCLUSION: These results indicate that susceptibility to arterial thrombosis and haemostasis is remarkably different in C57BL/and A/J mice. Three A/J chromosome substitution strains were identified that expressed a phenotype similar to A/J for rebleeding, the C57Bl/6J background could modify the A/J phenotype, and the combination of two A/J QTL could restore the phenotype. The diverse genetic backgrounds and differences in response to vascular injury induced thrombosis and the tail bleeding assay, suggest the potential for identifying novel genetic determinants of thrombotic risk.

5.
Mamm Genome ; 19(6): 406-12, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18787898

RESUMO

Susceptibility to thrombosis varies in human populations as well as many in inbred mouse strains. The objective of this study was to characterize the genetic control of thrombotic risk on three chromosomes. Previously, utilizing a tail-bleeding/rebleeding assay as a surrogate of hemostasis and thrombosis function, three mouse chromosome substitution strains (CSS) (B6-Chr5(A/J), Chr11(A/J), Chr17(A/J)) were identified (Hmtb1, Hmtb2, Hmtb3). The tail-bleeding/rebleeding assay is widely used and distinguishes mice with genetic defects in blood clot formation or dissolution. In the present study, quantitative trait locus (QTL) analysis revealed a significant locus for rebleeding (clot stability) time (time between cessation of initial bleeding and start of the second bleeding) on chromosome 5, suggestive loci for bleeding time (time between start of bleeding and cessation of bleeding) also on chromosomes 5, and two suggestive loci for clot stability on chromosome 17 and one on chromosome 11. The three CSS and the parent A/J had elevated clot stability time. There was no interaction of genes on chromosome 11 with genes on chromosome 5 or chromosome 17. On chromosome 17, twenty-three candidate genes were identified in synteny with previously identified loci for thrombotic risk on human chromosome 18. Thus, we have identified new QTLs and candidate genes not previously known to influence thrombotic risk.


Assuntos
Hemostasia/genética , Locos de Características Quantitativas/genética , Trombose/genética , Alelos , Animais , Cromossomos de Mamíferos/genética , Enzimas de Restrição do DNA/metabolismo , Marcadores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Repetições de Microssatélites/genética , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa