Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638294

RESUMO

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

2.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399755

RESUMO

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

3.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

4.
Phys Rev Lett ; 124(14): 145002, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338973

RESUMO

Data from nuclear diagnostics present correlated signatures of azimuthal implosion asymmetry in recent indirect-drive inertial confinement fusion (ICF) implosion campaigns performed at the National Ignition Facility (NIF). The mean hot-spot velocity, inferred from the Doppler shift of 14 MeV neutrons produced by deuterium-tritium (DT) fusion, is systematically directed toward one azimuthal half of the NIF target chamber, centered on ϕ≈70°. Areal density (ρR) asymmetry of the converged DT fuel, inferred from nuclear activation diagnostics, presents a minimum ρR in the same direction as the hot-spot velocity and with ΔρR amplitude correlated with velocity magnitude. These two correlated observations, which are seen in all recent campaigns with cryogenic layers of DT fuel, are a known signature of asymmetry in the fuel convergence, implying a systematic azimuthal drive asymmetry across a wide range of shot and target configurations. The direction of the implied radiation asymmetry is observed to cluster toward the hohlraum diagnostic windows. This low-mode asymmetry degrades hot-spot conditions at peak convergence and limits implosion performance and yield.

5.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095614

RESUMO

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

6.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702328

RESUMO

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

7.
Phys Rev Lett ; 121(8): 085001, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192614

RESUMO

Accurate measurement of the thermal temperature in inertially confined fusion plasmas is essential for characterizing ignition performance and validating the basic physics understanding of the stagnation conditions. We present experimental results from cryogenic deuterium-tritium implosions on the National Ignition Facility using a differential filter spectrometer designed to measure the thermal electron temperature from x-ray continuum emission from the stagnated plasma. Furthermore, electron temperature measurements, used in conjunction with the Doppler-broadened DT neutron spectra, allow one to infer the partition of energy in the hot spot between internal energy and unconverted kinetic energy.

8.
Phys Rev Lett ; 114(17): 175001, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978240

RESUMO

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α∼3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10(15) neutrons, with 20% calculated alpha heating at convergence ∼27×.

9.
Phys Rev Lett ; 111(21): 215001, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313493

RESUMO

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm2. Future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

10.
Rev Sci Instrum ; 94(3): 033510, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012781

RESUMO

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond detector used for measuring multiple nuclear bang times at the National Ignition Facility. Due to the non-trivial, polycrystalline structure of these detectors, individual characterization and measurement are required to interrogate the sensitivity and behavior of charge carriers. In this paper, a process is developed for determining the x-ray sensitivity of PTOF detectors and relating it to the intrinsic properties of the detector. We demonstrate that the diamond sample measured has a significant non-homogeneity in its properties, with the charge collection well described by a linear model ax + b, where a = 0.63 ± 0.16 V-1 mm-1 and b = 0.00 ± 0.04 V-1. We also use this method to confirm an electron to hole mobility ratio of 1.5 ± 1.0 and an effective bandgap of 1.8 eV rather than the theoretical 5.5 eV, leading to a large sensitivity increase.

11.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862497

RESUMO

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

12.
Phys Rev E ; 108(5): L053203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115512

RESUMO

Inertial confinement fusion ignition requires high inflight shell velocity, good energy coupling between the hotspot and shell, and high areal density at peak compression. Three-dimensional asymmetries caused by imperfections in the drive symmetry or target can grow and damage the coupling and confinement. Recent high-yield experiments have shown that low-mode asymmetries are a key degradation mechanism and contribute to variability. We show the experimental signatures and impacts of asymmetry change with increasing implosion yield given the same initial cause. This letter has implications for improving robustness to a key degradation in ignition experiments.

13.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

14.
Rev Sci Instrum ; 93(11): 113550, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461502

RESUMO

The analysis of the National Ignition Facility (NIF) neutron time-of-flight (nToF) detectors uses a forward-fit routine that depends critically on the instrument response functions (IRFs) of the diagnostics. The details of the IRFs used can have large impacts on measurements such as ion temperature and down-scattered ratio (DSR). Here, we report on the recent steps taken to construct and validate nToF IRFs at the NIF to an increased degree of accuracy, as well as remove the need for fixed DSR baseline offsets. The IRF is treated in two parts: a "core," measured experimentally with an x-ray impulse source, and a "tail" that occurs later in time and has limited experimental data. The tail region is calibrated with the data from indirect drive exploding pusher shots, which have little neutron scattering and are traditionally assumed to have zero DSR. Using analytic modeling estimates, the non-zero DSR for these shots is estimated. The impact of varying IRF tail components on DSR is investigated with a systematic parameter study, and good agreement is found with the non-zero DSR estimates. These approaches will be used to improve the precision and uncertainty of NIF nToF DSR measurements.

15.
Rev Sci Instrum ; 93(11): 113528, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461449

RESUMO

In the dynamic environment of burning, thermonuclear deuterium-tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.

16.
Rev Sci Instrum ; 93(11): 113536, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461534

RESUMO

A concept for using an intermediate distance (0.3-3.0 m) neutron time-of-flight (nToF) to provide a constraint on the measurement of the time-dependence of ion temperature in inertial confinement fusion implosions is presented. Simulated nToF signals at different distances are generated and, with a priori knowledge of the burn-averaged quantities and burn history, analyzed to determine requirements for a future detector. Results indicate a signal-to-noise ratio >50 and time resolution <20 ps to constrain the ion temperature gradient to ∼±25% (0.5 keV/100 ps).

17.
Phys Rev E ; 106(2-2): 025202, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109932

RESUMO

An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. We describe the experimental improvements that enabled N210808 and present the first experimental measurements from an igniting plasma in the laboratory. Ignition metrics like the product of hot-spot energy and pressure squared, in the absence of self-heating, increased by ∼35%, leading to record values and an enhancement from previous experiments in the hot-spot energy (∼3×), pressure (∼2×), and mass (∼2×). These results are consistent with self-heating dominating other power balance terms. The burn rate increases by an order of magnitude after peak compression, and the hot-spot conditions show clear evidence for burn propagation into the dense fuel surrounding the hot spot. These novel dynamics and thermodynamic properties have never been observed on prior inertial fusion experiments.

18.
Phys Rev E ; 106(2-2): 025201, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110025

RESUMO

We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central "hot spot" of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of α particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a ∼3-6× increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021)1070-664X10.1063/5.0035583, Phys. Plasmas 25, 122704 (2018)1070-664X10.1063/1.5049595]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory "ignition."

19.
Rev Sci Instrum ; 92(4): 043555, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243390

RESUMO

The time-resolved measurement of neutrons emitted from nuclear implosions at inertial confinement fusion facilities is used to characterize the fusing plasma. Several significant quantities are routinely measured by neutron time-of-flight (nToF) detectors in these experiments. Current nToF detectors use scintillators as well as solid-state Cherenkov radiators. The latter has an inherently faster time response and can provide a co-registered γ-ray measurement as well as improved precision in the bulk hot-spot velocity. This work discusses a nToF ellipsoidal detector that also utilizes a solid-state Cherenkov radiator. The detector has the potential to achieve a fast instrument response function allowing for characterization of the γ-ray burn history as well as the ability to field the detector closer to the fusion source. Proof-of-concept testing of the nToF ellipsoidal detector has been conducted at the National Ignition Facility using commercial optics. A time-resolved neutron signal has been measured from the diagnostic. Preliminary simulations corroborate the results.

20.
Rev Sci Instrum ; 92(4): 043527, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243407

RESUMO

The Real Time Nuclear Activation Detector (RTNAD) array at NIF measures the distribution of 14 MeV neutrons emitted by deuterium-tritium (DT) fueled inertial confinement fusion implosions. The uniformity of the neutron distribution is an important indication of implosion symmetry and DT shell integrity. The array consists of 48 LaBr3(Ce) crystal gamma-ray spectrometers mounted outside the NIF target chamber, which continuously monitor the slow decay of the 909 keV gamma-ray line from activated 89Zr located in Zr cups surrounding each crystal. The measured decay rate dramatically increases during a DT implosion in proportion to the number of 14 MeV neutrons striking each Zr cup. The neutrons produce activated 89Zr through an (n, 2n) reaction on 90Zr, which is insensitive to low energy neutrons. The neutron flux along the detector line-of-sight at shot time is determined by extrapolating the fitted 909 keV decay curve back to shot time. Automatic analysis algorithms were developed to handle the non-stop data stream. The large number of detectors and the high statistical accuracy of the array enable the spherical harmonic modes of the neutron angular distribution to be measured up to L ≤ 4 to provide a better understanding of implosion dynamics. In addition, these data combined with measurements of the down-scattered neutrons can be used to derive fuel areal density distributions. This paper will describe the RTNAD hardware and analysis procedures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa