Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 394(2): 327-39, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127995

RESUMO

Two vascular networks nourish the embryonic eye as it develops - the hyaloid vasculature, located at the anterior of the eye between the retina and lens, and the choroidal vasculature, located at the posterior of the eye, surrounding the optic cup. Little is known about hyaloid development and morphogenesis, however. To begin to identify the morphogenetic underpinnings of hyaloid formation, we utilized in vivo time-lapse confocal imaging to characterize morphogenesis of the zebrafish hyaloid through 5 days post fertilization (dpf). Our data segregate hyaloid formation into three distinct morphogenetic stages: Stage I: arrival of hyaloid cells at the lens and formation of the hyaloid loop; Stage II: formation of a branched hyaloid network; Stage III: refinement of the hyaloid network. Utilizing fixed and dissected tissues, distinct Stage II and Stage III aspects of hyaloid formation were quantified over time. Combining in vivo imaging with microangiography, we demonstrate that the hyaloid system becomes fully enclosed by 5dpf. To begin to identify the molecular and cellular mechanisms underlying hyaloid morphogenesis, we identified a recessive mutation in the mab21l2 gene, and in a subset of mab21l2 mutants the lens does not form. Utilizing these "lens-less" mutants, we determined whether the lens was required for hyaloid morphogenesis. Our data demonstrate that the lens is not required for Stage I of hyaloid formation; however, Stages II and III of hyaloid formation are disrupted in the absence of a lens, supporting a role for the lens in hyaloid maturation and maintenance. Taken together, this study provides a foundation on which the cellular, molecular and embryologic mechanisms underlying hyaloid morphogenesis can be elucidated.


Assuntos
Olho/irrigação sanguínea , Olho/embriologia , Cristalino/fisiologia , Morfogênese/fisiologia , Peixe-Zebra/embriologia , Angiografia/métodos , Animais , Clonagem Molecular , Crioultramicrotomia , Proteínas de Fluorescência Verde , Microscopia Confocal , Imagem com Lapso de Tempo
2.
Biochim Biophys Acta ; 1778(3): 660-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17854762

RESUMO

Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, beta-catenin and alpha-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.


Assuntos
Actinas/fisiologia , Junções Aderentes/química , Junções Aderentes/fisiologia , Citoesqueleto/química , Citoesqueleto/fisiologia , Junções Íntimas/química , Junções Íntimas/fisiologia , Actinas/química , Animais , Caderinas/química , Caderinas/fisiologia , Cateninas/química , Cateninas/fisiologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Modelos Moleculares , Estrutura Molecular , Ocludina
3.
PLoS One ; 7(5): e37476, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693575

RESUMO

p120-Catenin binding to, and Hakai-mediated ubiquitination of the E-cadherin juxtamembrane domain (JMD) are thought to be involved in regulating E-cadherin internalization and degradation. However, the relationship between these two pathways is not understood. We targeted the E-cadherin JMD to mitochondria (WT-JMD) to isolate this domain from the plasma membrane and internalization, and to examine protein modifications and degradation. WT-JMD localized to mitochondria, but did not accumulate there except when proteasome activity was inhibited. We found WT-JMD was ubiquitinated, and arginine substitution of lysines at position 5 (K5R) and 83 (K83R) resulted in the stable accumulation of mutant JMD at mitochondria. p120-Catenin did not localize, or bind to WT-JMD even upon proteasome inhibition, whereas the K5,83R-JMD mutant bound and localized p120-catenin to mitochondria. Mutation of the p120-catenin binding site in combination with these lysine mutations inhibited p120-catenin binding, but did not decrease JMD stability or its accumulation at mitochondria. Thus, increased stability of JMD lysine mutants was due to inhibition of ubiquitination and not to p120-catenin binding. Finally, mutation of these critical lysines in full length E-cadherin had similar effects on protein stability as WT-JMD. Our results indicate that ubiquitination of the JMD inhibits p120-catenin binding, and targets E-cadherin for degradation.


Assuntos
Ligação Competitiva , Caderinas/química , Caderinas/metabolismo , Cateninas/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Caderinas/genética , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Cães , Lisina , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Quinases da Família src/metabolismo , delta Catenina
4.
Mol Biol Cell ; 23(24): 4725-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23097490

RESUMO

Lens fiber formation and morphogenesis requires a precise orchestration of cell- extracellular matrix (ECM) and cell-cell adhesive changes in order for a lens epithelial cell to adopt a lens fiber fate, morphology, and migratory ability. The cell-ECM interactions that mediate these processes are largely unknown, and here we demonstrate that fibronectin1 (Fn1), an ECM component, and integrin α5, its cellular binding partner, are required in the zebrafish lens for fiber morphogenesis. Mutations compromising either of these proteins lead to cataracts, characterized by defects in fiber adhesion, elongation, and packing. Loss of integrin α5/Fn1 does not affect the fate or viability of lens epithelial cells, nor does it affect the expression of differentiation markers expressed in lens fibers, although nucleus degradation is compromised. Analysis of the intracellular mediators of integrin α5/Fn1 activity focal adhesion kinase (FAK) and integrin-linked kinase (ILK) reveals that FAK, but not ILK, is also required for lens fiber morphogenesis. These results support a model in which lens fiber cells use integrin α5 to migrate along a Fn-containing substrate on the apical side of the lens epithelium and on the posterior lens capsule, likely activating an intracellular signaling cascade mediated by FAK in order to orchestrate the cytoskeletal changes in lens fibers that facilitate elongation, migration, and compaction.


Assuntos
Fibronectinas/genética , Quinase 1 de Adesão Focal/genética , Integrina alfa5/genética , Cristalino/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Hibridização In Situ , Integrina alfa5/metabolismo , Cristalino/embriologia , Cristalino/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Modelos Genéticos , Morfogênese/genética , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa