Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2317078121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466848

RESUMO

Covalent bonding interactions determine the energy-momentum (E-k) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the E-k dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity. Electronic spectral, chiro-optic, potentiometric, electronic device, and work function data corroborate that the magnitude of band gap opening depends on the nature of the polymer electronic structure. Polymer dewrapping reverses the conducting-to-semiconducting phase transition, restoring the native metallic carbon nanotube electronic structure. These results address a long-standing challenge to develop carbon nanotube electronic structures that are not realized through disruption of π conjugation, and establish a roadmap for designing and tuning specialized semiconductors that feature band gaps on the order of a few hundred meV.

2.
ACS Appl Mater Interfaces ; 15(1): 984-996, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548441

RESUMO

A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). fac-Re(5-(p-Styrene)-phen)(CO)3Cl (5-(p-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites. Attenuated total reflectance-Fourier transform infrared spectroscopy confirms attachment of the organometallic complex to silicon without degradation of the organometallic core, supporting hydrosilylation as a strategy for installing coordination complexes that retain their molecular integrity. Detection of Re(I) and nitrogen by X-ray photoelectron spectroscopy (XPS) further support immobilization of fac-Re(5-(p-styrene)-phen)(CO)3Cl. Cyclic voltammetry and electrochemical impedance spectroscopy under white light illumination indicate that fac-Re(5-(p-styrene)-phen)(CO)3Cl undergoes two electron reductions. Mott-Schottky analysis indicates that the flat band potential is 239 mV more positive for p-Si(111) co-functionalized with both fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene than when functionalized with 1-hexene alone. XPS, ultraviolet photoelectron spectroscopy, and Mott-Schottky analysis show that functionalization with fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene introduces a negative interfacial dipole, facilitating reductive photoelectrochemistry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa