Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2307802121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437557

RESUMO

RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.


Assuntos
Neoplasias Ovarianas , Peptídeos , Humanos , Feminino , Interferência de RNA , Peptídeos/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Peptídeo Hidrolases , RNA Interferente Pequeno/genética , Endopeptidases , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA
2.
J Vis Exp ; (202)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38145378

RESUMO

Creating synthetic biomarkers for the development of precision diagnostics has enabled detection of disease through pathways beyond those used for traditional biofluid measurements. Synthetic biomarkers generally make use of reporters that provide readable signals in the biofluid to reflect the biochemical alterations in the local disease microenvironment during disease incidence and progression. The pharmacokinetic concentration of the reporters and biochemical amplification of the disease signal are paramount to achieving high sensitivity and specificity in a diagnostic test. Here, a cancer diagnostic platform is built using one format of synthetic biomarkers: activity-based nanosensors carrying chemically stabilized DNA reporters that can be liberated by aberrant proteolytic signatures in the tumor microenvironment. Synthetic DNA as a disease reporter affords multiplexing capability through its use as a barcode, allowing for the readout of multiple proteolytic signatures at once. DNA reporters released into the urine are detected using CRISPR nucleases via hybridization with CRISPR RNAs, which in turn produce a fluorescent or colorimetric signal upon enzyme activation. In this protocol, DNA-barcoded, activity-based nanosensors are constructed and their application is exemplified in a preclinical mouse model of metastatic colorectal cancer. This system is highly modifiable according to disease biology and generates multiple disease signals simultaneously, affording a comprehensive understanding of the disease characteristics through a minimally invasive process requiring only nanosensor administration, urine collection, and a paper test which enables point-of-care diagnostics.


Assuntos
Líquidos Corporais , Sistemas CRISPR-Cas , Animais , Camundongos , Urinálise , Biomarcadores , DNA/genética
3.
Nat Nanotechnol ; 18(7): 798-807, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095220

RESUMO

Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be 'read out' via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Neoplasias/diagnóstico , Neoplasias/genética , DNA , Biomarcadores , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa