Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619706

RESUMO

Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders characterized by clinical, locus, and allele heterogeneity. This study aims to investigate the phenotype and genotype spectrum of GSDs in a cohort of 14 families from Iran using whole-exome sequencing (WES) and variant analysis. WES was performed on 14 patients clinically suspected of GSDs. Variant analysis was performed to identify genetic variants associated with GSDs. A total of 13 variants were identified, including six novel variants, and seven previously reported pathogenic variants in genes such as AGL, G6PC, GAA, PYGL, PYGM, GBE1, SLC37A4, and PHKA2. Most types of GSDs observed in the cohort were associated with hepatomegaly, which was the most common clinical presentation. This study provides valuable insights into the phenotype and genotype spectrum of GSDs in a cohort of Iranian patients. The identification of novel variants adds to the growing body of knowledge regarding the genetic landscape of GSDs and has implications for genetic counseling and future therapeutic interventions. The diverse nature of GSDs underscores the need for comprehensive genetic testing methods to improve diagnostic accuracy. Continued research in this field will enhance our understanding of GSDs, ultimately leading to improved management and outcomes for individuals affected by these rare metabolic disorders.

2.
Neurol Sci ; 44(11): 4041-4048, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37369877

RESUMO

Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant genetic disorder caused by genetic alterations in the CTNNB1 gene. CTNNB1 is a gene that encodes ß-catenin, an effector protein in the canonical Wnt pathway involved in stem cell differentiation and proliferation, synaptogenesis, and a wide range of essential cellular mechanisms. Mutations in this gene are also found in specific malignancies as well as exudative vitreoretinopathy. To date, only a limited number of cases of this disease have been reported, and though they share some phenotypic manifestations such as intellectual disability, developmental delay, microcephaly, behavioral abnormalities, and dystonia, the variety of phenotypic traits of these patients shows extreme heterogeneity. In this study, two cases of NEDSDV with de novo CTNNB1 mutations: c.1420C>T(p.R474X) and c.1377_1378Del(p.Ala460Serfs*29), found with whole exome sequencing (WES) have been reported and the clinical and paraclinical characteristics of these patients have been described. Due to such a wide range of clinical characteristics, the identification of new patients and novel variants is of great importance in order to establish a more complete phenotypic spectrum, as well as to conclude the genotype-phenotype correlations in these cases.

3.
Neurol Sci ; 43(4): 2859-2863, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35099645

RESUMO

CTNNB1 encodes for the ß-catenin protein, a component of the cadherin adhesion complex, which regulates cell-cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.


Assuntos
Deficiência Intelectual , Microcefalia , Criança , Códon sem Sentido , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Irã (Geográfico) , Mutação/genética , beta Catenina/genética
4.
Heliyon ; 10(6): e27434, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38501011

RESUMO

Background and aims: The occurrence of thiamine metabolism dysfunction syndrome (THMD), a rare autosomal recessive condition, may be linked to various mutations found in the TPK1 and SLC19A3 genes. The disease chiefly manifests through ataxia, muscle hypotonia, abrupt or subacute onset encephalopathy, and a decline in developmental milestones achieved during the early stages of infancy. We present findings from an investigation that involved two individuals from Iran, both of whom experienced seizures along with ataxia and hypotonia. The underlying genetic causes were found with the use of next-generation sequencing (NGS) technology, which has facilitated the detection of causal changes in a variety of genetic disorders. Material and methods: The selection of cases for this study was based on the phenotypic and genetic information that was obtainable from the Center for Comprehensive Genetic Services. The genetic basis for the problems observed among the participants was determined through the application of whole-exome sequencing (WES). Subsequently, sanger sequencing was employed as a means of validating any identified variations suspected to be causative. Results: The first patient exhibited a homozygous mutation in the TPK1 gene, NM_022445.4:c.224 T > A:p.I75 N, resulting in the substitution of isoleucine for asparagine at position 75 (p.I75 N). In our investigation, patient 2 exhibited a homozygous variant, NM_025243.4:c.1385dupA:pY462X, within the SLC19A3 gene. Conclusions: Collectively, when presented with patients showcasing ataxia, encephalopathy, and basal ganglia necrosis, it is essential to account for thiamine deficiency in light of the potential advantages of prompt intervention. At times, it may be feasible to rectify this deficiency through the timely administration of thiamine dosages. Accordingly, based on the results of the current investigation, these variations may be useful for the diagnosis and management of patients with THMD.

5.
BMC Med Genomics ; 17(1): 20, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216990

RESUMO

BACKGROUND: Cornelia de Lange Syndrome (CdLS) is a rare genetic disorder characterized by a range of physical, cognitive, and behavioral abnormalities. This study aimed to perform a comprehensive review of the literature on CdLS and investigate two cases of CdLS with distinct phenotypes that underwent WES to aid in their diagnosis. METHODS: We conducted a comprehensive review of the literature on CdLS along with performing whole-exome sequencing on two CdLS patients with distinct phenotypes, followed by Sanger sequencing validation and in-silico analysis. RESULTS: The first case exhibited a classic CdLS phenotype, but the initial WES analysis of blood-derived DNA failed to identify any mutations in CdLS-related genes. However, a subsequent WES analysis of skin-derived DNA revealed a novel heterozygous mutation in the NIPBL gene (NM_133433.4:c.6534_6535del, p.Met2178Ilefs*8). The second case was presented with a non-classic CdLS phenotype, and WES analysis of blood-derived DNA identified a heterozygous missense variant in the SMC1A gene (NM_006306.4:c.2320G>A, p.Asp774Asn). CONCLUSIONS: The study shows the importance of considering mosaicism in classic CdLS cases and the value of WES for identifying genetic defects. These findings contribute to our understanding of CdLS genetics and underscore the need for comprehensive genetic testing to enhance the diagnosis and management of CdLS patients.


Assuntos
Proteínas de Ciclo Celular , Síndrome de Cornélia de Lange , Humanos , Proteínas de Ciclo Celular/genética , Exoma , Mutação , Fenótipo , DNA , Biópsia , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/diagnóstico
6.
BMC Med Genomics ; 17(1): 51, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347586

RESUMO

BACKGROUND: Pontocerebellar hypoplasia is an umbrella term describing a heterogeneous group of prenatal neurodegenerative disorders mostly affecting the pons and cerebellum, with 17 types associated with 25 genes. However, some types of PCH lack sufficient information, which highlights the importance of investigating and introducing more cases to further elucidate the clinical, radiological, and biochemical features of these disorders. The aim of this study is to provide an in-depth review of PCH and to identify disease genes and their inheritance patterns in 12 distinct Iranian families with clinically confirmed PCH. METHODS: Cases included in this study were selected based on their phenotypic and genetic information available at the Center for Comprehensive Genetic Services. Whole-exome sequencing (WES) was used to discover the underlying genetic etiology of participants' problems, and Sanger sequencing was utilized to confirm any suspected alterations. We also conducted a comprehensive molecular literature review to outline the genetic features of the various subtypes of PCH. RESULTS: This study classified and described the underlying etiology of PCH into three categories based on the genes involved. Twelve patients also were included, eleven of whom were from consanguineous parents. Ten different variations in 8 genes were found, all of which related to different types of PCH. Six novel variations were reported, including SEPSECS, TSEN2, TSEN54, AMPD2, TOE1, and CLP1. Almost all patients presented with developmental delay, hypotonia, seizure, and microcephaly being common features. Strabismus and elevation in lactate levels in MR spectroscopy were novel phenotypes for the first time in PCH types 7 and 9. CONCLUSIONS: This study merges previously documented phenotypes and genotypes with unique novel ones. Due to the diversity in PCH, we provided guidance for detecting and diagnosing these heterogeneous groups of disorders. Moreover, since certain critical conditions, such as spinal muscular atrophy, can be a differential diagnosis, providing cases with novel variations and clinical findings could further expand the genetic and clinical spectrum of these diseases and help in better diagnosis. Therefore, six novel genetic variants and novel clinical and paraclinical findings have been reported for the first time. Further studies are needed to elucidate the underlying mechanisms and potential therapeutic targets for PCH.


Assuntos
Doenças Cerebelares , Proteínas Nucleares , Feminino , Gravidez , Humanos , Irã (Geográfico) , Genótipo , Fenótipo , Mutação
7.
Mol Genet Genomic Med ; 10(9): e2004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35758145

RESUMO

BACKGROUND: Gnathodiaphyseal dysplasia (GDD) is an ultrarare autosomal dominant bone dysplasia characterized by cementoosseous lesions of the jawbones, bone fragility, frequent bone fractures at the young age, bowing of tubular bones, and diaphyseal sclerosis of long bones associated with generalized osteopenia. GDD is caused by point mutations in anoctamin-5 (ANO5) on chromosome 11p14.3. For the past few years, next generation sequencing (NGS) technology has facilitated the discovery of causative variants in genetically heterogeneous diseases. METHODS: In this study, exome sequencing (ES) was performed using the DNA sample of the proband. Family histories and clinical information were collected through comprehensive medical examination and genetic counseling. RESULTS: ES results identified a heterozygous variant, NM_213599.3:c.1078T>C(p.Cys360Arg) in the ANO5 gene. Sanger sequencing was performed to confirm the detected pathogenic variant in DNA samples of the entire family (except deceased individuals), which segregated with the disease within the family. Finally, in silico analysis was applied to test the pathogenicity of the variant using various online software. CONCLUSION: In summary, our investigation identified a novel pathogenic variant in the ANO5, responsible for gnathodiaphyseal dysplasia in a large Iranian family. Therefore, based on the present study, this variant can be helpful for diagnosis and effective management of GDD patients.


Assuntos
Anoctaminas , Osteogênese Imperfeita , Anoctaminas/genética , Osso e Ossos/patologia , Humanos , Irã (Geográfico) , Osteogênese Imperfeita/patologia
8.
Iran J Child Neurol ; 16(2): 117-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497098

RESUMO

Objective: Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric group of pervasive developmental disorders mainly diagnosed through the complex behavioral phenotype. According to strong genetic involvement, detecting the chromosome regions and the key genes linked to autism can help to elucidate its etiology. The present study aimed to investigate the value of cytogenetic analysis in syndromic autism and find an association between autism and chromosome abnormalities. Materials & Methods: Thirty-six autistic patients from 30 families were recruited, clinically diagnosed with the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5). The syndromic patients with additional clinical features (including development delay, attention deficit, hyperactivity disorder, seizure, and language and intellectual impairment) were selected due to elevating the detection rate. Cytogenetics analysis was performed using GTG banding on the patients' cultured fibroblasts. Moreover, array-comparative genomic hybridization (CGH) was also performed for patients with a de novo and novel variant. Results: Karyotype analysis in 36 syndromic autistic patients detected chromosomal abnormalities in 2 (5.6%) families, including 46,XY,dup(15)(q11.1q11.2) and 46,XX,ins(7)(q11.1q21.3)dn. In the latter, array-CGH detected 3 abnormalities on chromosome 7, including deletion and insertion on both arms: 46,XX,del(7)(q21.11q21.3),dup(7)(p11.2p14.1p12.3)dn. Conclusion: We reported a novel and de novo cytogenetic abnormality on chromosome 7 in an Iranian patient diagnosed with syndromic autism. However, the detection rate in syndromic autism was low, implying that it cannot be utilized as the only diagnostic procedure.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa