Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794744

RESUMO

There is a growing concern that antidepressant drugs impair sexual function and adversely impact spermatogenesis and male fertility. Vitamin C is a natural antioxidant that plays a vital role in the male reproductive system. The present study investigated the ameliorating potential of vitamin C against citalopram (CTL)-evoked testicular toxicity and spermatogenesis impairment in mice. Mice were randomly divided into six groups: control, CTL, vitamin C 100, vitamin C 200, CTL plus vitamin C 100, and CTL plus vitamin C 200. Adult male mice were intraperitoneally (ip) injected with 10 mg/kg of CTL for 35 days with or without vitamin C. At the end of the study, body and testes weight, sperm parameters, histopathology of testes, testosterone level, testicular levels of malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (TAC), and apoptosis (TUNEL assay) were evaluated. Our findings revealed that vitamin C restored spermatogenesis by improving sperm count, motility, viability, morphology, and chromatin integrity. Testosterone levels and testes histopathology were significantly improved in the vitamin C-administrated groups. Furthermore, vitamin C administration markedly alleviated CTL-induced nitro-oxidative damage, enhancing TAC levels, and reducing NO and MDA levels. Whilst CTL therapy induced a significant increase in the number of TUNEL-positive cells compared to the control, the administration of vitamin C significantly prevented the apoptotic effects of CTL. Together, vitamin C therapy protects against CTL-induced testicular damage via mitigating nitro-oxidative stress and apoptosis, which provides evidence for vitamin C as a beneficial therapy against antidepressant drug-associated reproductive toxicity and male sub/infertility.


Assuntos
Infertilidade Masculina , Testículo , Humanos , Masculino , Camundongos , Animais , Testículo/metabolismo , Ácido Ascórbico/farmacologia , Antioxidantes/metabolismo , Citalopram/farmacologia , Citalopram/metabolismo , Sêmen/metabolismo , Estresse Oxidativo , Espermatozoides , Apoptose , Infertilidade Masculina/metabolismo , Testosterona/farmacologia
2.
Sci Rep ; 14(1): 1565, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238398

RESUMO

Impaired spermatogenesis and male infertility are common consequences of chemotherapy drugs used in patients with testicular cancer. The present study investigated the effects of sodium alginate (NaAL) on testicular toxicity caused by bleomycin, etoposide, and cisplatin (BEP). Rats in group 1 received normal saline, while groups 2 and 3 were treated with 25 and 50 mg/kg of NaAL, respectively. Group 4 was treated with a 21-day cycle of BEP (0.5 mg/kg bleomycin, 5 mg/kg etoposide, and 1 mg/kg cisplatin), and groups 5 and 6 received BEP regimen plus 25 and 50 mg/kg of NaAL, respectively. Then, sperm parameters, testosterone levels, testicular histopathology and stereological parameters, testicular levels of malondialdehyde (MDA), nitric oxide (NO), and total antioxidant capacity (TAC), and the expression of apoptosis-associated genes including Bcl2, Bax, Caspase3, p53, and TNF-α were evaluated. Our findings revealed that NaAL improved sperm parameters, testosterone levels, histopathology, and stereology parameters in BEP-administrated rats. NaAL also improved testis antioxidant status by enhancing TAC and ameliorating MDA and NO. Further, modifications to the expression of Bcl2, Bax, Caspase3, p53, and TNF-α suggested that NaAL alleviated BEP-induced apoptosis and inflammation. Collectively, NaAL protects rats' testes against BEP-evoked toxicity damage through the modulation of nitro-oxidative stress, apoptosis, and inflammation.


Assuntos
Cisplatino , Neoplasias Testiculares , Humanos , Masculino , Ratos , Animais , Cisplatino/toxicidade , Cisplatino/metabolismo , Etoposídeo/farmacologia , Neoplasias Testiculares/patologia , Bleomicina/toxicidade , Bleomicina/metabolismo , Antioxidantes/metabolismo , Alginatos/farmacologia , Alginatos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sêmen/metabolismo , Testosterona/metabolismo , Estresse Oxidativo , Apoptose , Inflamação/induzido quimicamente
3.
Reprod Toxicol ; 118: 108368, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966901

RESUMO

Citalopram is the most potent selective serotonin reuptake inhibitor, commonly prescribed as an antidepressant, which can cause sexual dysfunction. Melatonin is a natural, highly effective antioxidant playing a pivotal role in the male reproductive system. The present study aimed to explore the ameliorating potential of melatonin on citalopram-evoked testicular toxicity and injury in mice. In this regard, mice were randomly divided into six groups: control, citalopram, melatonin 10 mg/kg, melatonin 20 mg/kg, melatonin 10 mg/kg plus citalopram, and melatonin 20 mg/kg plus citalopram. Adult male mice were intraperitoneally (i.p.) injected with 10 mg/kg of citalopram for 35 days with or without melatonin. At the end of the study, sperm parameters, testosterone level, testicular levels of malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (TAC), and apoptosis (Tunel essay) were evaluated. Our findings revealed that melatonin restored spermatogenesis by improving sperm count, motility, viability, morphology, and chromatin integrity. Testosterone levels and the histopathology of the testes were markedly improved in the melatonin-administrated groups. Furthermore, citalopram administration significantly increased oxidative stress; however, melatonin restored antioxidant status by enhancing TAC levels and decreasing NO and MAD levels. More notably, citalopram therapy induced a significant increase in the number of Tunel-positive cells, while melatonin administration significantly mitigated the apoptotic impacts of citalopram. Together, melatonin therapy provides protection against citalopram-induced testicular damage via modulating nitro-oxidative stress and apoptosis, which provides evidence for melatonin as a promising treatment against antidepressant drug-associated reproductive toxicity and male sub/infertility.


Assuntos
Infertilidade Masculina , Melatonina , Animais , Masculino , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose , Citalopram/toxicidade , Citalopram/metabolismo , Infertilidade Masculina/metabolismo , Melatonina/farmacologia , Estresse Oxidativo , Sêmen/metabolismo , Testículo , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa