1.
J Chem Phys
; 143(20): 204308, 2015 Nov 28.
Artigo
em Inglês
| MEDLINE
| ID: mdl-26627960
RESUMO
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical and the other where the center-of-mass motion is treated classically, while rotational motion is quantized. We study the rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion and that it departs from the Mathieu equation solution found for atomic ions. For the case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.