Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutrition ; 93: 111440, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34534944

RESUMO

Vitamin E (α-tocopherol [α-TOH]) is transported in lipoprotein particles in blood, but little is known about the transportation of its oxidized metabolites. In the Netherlands Epidemiology of Obesity Study, we aimed to investigate the associations of 147 circulating metabolomic measures obtained through targeted nuclear magnetic resonance with serum α-TOH and its urinary enzymatic (α-CEHC) and oxidized (α-TLHQ) metabolites from 24-h urine quantified by liquid chromatography with tandem mass spectrometry. Multivariable linear regression analyses, in which multiple testing was taken into account, were performed to assess associations between metabolomic measures (determinants; standardized to mean = 0, SD = 1) and vitamin E metabolites (outcomes), adjusted for demographic factors. We analyzed 474 individuals (55% women, 45% men) with a mean (SD) age of 55.7 (6.0) y. Out of 147 metabolomic measures, 106 were associated (P < 1.34 × 10-3) with serum α-TOH (median ß [interquartile range] = 0.416 [0.383-0.466]), predominantly lipoproteins associated with higher α-TOH. The associations of metabolomic measures with urinary α-CEHC have directions similar to those with α-TOH, but effect sizes were smaller and non-significant (median ß [interquartile range] = 0.065 [0.047-0.084]). However, associations of metabolomic measures with urinary α-TLHQ were markedly different from those with both serum α-TOH and urinary α-CEHC, with negative and small-to-null relations to most very-low-density lipoproteins and amino acids. Therefore, our results highlight the differences in the lipoproteins involved in the transportation of circulating α-TOH and oxidized vitamin E metabolites. This indicates that circulating α-TOH may be representative of the enzymatic but not the antioxidative function of vitamin E.


Assuntos
Metaboloma , Vitamina E , alfa-Tocoferol , Antioxidantes , Feminino , Humanos , Lipoproteínas , Masculino , Pessoa de Meia-Idade , Oxirredução , Vitamina E/sangue , Vitamina E/urina , alfa-Tocoferol/sangue , alfa-Tocoferol/urina
2.
Genes Cells ; 14(6): 717-26, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19469880

RESUMO

Lifespan is regulated by a complex combination of environmental and genetic factors. Autophagy, which is a bulk degradation system of macromolecules and organelles, has an important role in various biological events. In Caenorhabditis elegans, several autophagy genes have been shown to have a role in promoting longevity, but many other autophagy genes have not been examined for their role in the lifespan regulation. Here we have systematically examined the effect of RNAi suppression of 14 autophagy genes on lifespan. While maternal RNAi of autophagy genes in wild-type worms tended to reduce lifespan, maternal RNAi of each of seven autophagy genes in the insulin/IGF-1 receptor daf-2 mutants extended lifespan. Remarkably, RNAi of unc-51/atg-1, bec-1/atg-6 or atg-9, from young adult, i.e. after development, extended lifespan in both wild-type animals and daf-2 mutants, although RNAi of one or two genes shortened it. Moreover, our analysis suggests that the lifespan extension, which is induced by RNAi of unc-51, bec-1 or atg-9 after development, does not require the transcription factor daf-16, the NAD(+)-dependent protein deacetylase sir-2.1 or the genes related to mitochondrial functions. Collectively, our results suggest that autophagy may not always be beneficial to longevity, but may also function to restrict lifespan in C. elegans.


Assuntos
Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Genes de Helmintos , Longevidade , Interferência de RNA , Envelhecimento/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Regulação da Expressão Gênica , Longevidade/genética , Longevidade/fisiologia , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa