RESUMO
Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.
Assuntos
Toxoplasma , Toxoplasma/metabolismo , Fosforilação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Vacúolos/metabolismoRESUMO
Secreted virulence factors of Toxoplasma to survive in immune-competent hosts have been extensively explored by classical genetics and in vivo CRISPR screen methods, whereas their requirements in immune-deficient hosts are incompletely understood. Those of non-secreted virulence factors are further enigmatic. Here we develop an in vivo CRISPR screen system to enrich not only secreted but also non-secreted virulence factors in virulent Toxoplasma-infected C57BL/6 mice. Notably, combined usage of immune-deficient Ifngr1-/- mice highlights genes encoding various non-secreted proteins as well as well-known effectors such as ROP5, ROP18, GRA12, and GRA45 as interferon-γ (IFN-γ)-dependent virulence genes. The screen results suggest a role of GRA72 for normal GRA17/GRA23 localization and the IFN-γ-dependent role of UFMylation-related genes. Collectively, our study demonstrates that host genetics can complement in vivo CRISPR screens to highlight genes encoding IFN-γ-dependent secreted and non-secreted virulence factors in Toxoplasma.
Assuntos
Toxoplasma , Fatores de Virulência , Animais , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Toxoplasma/metabolismo , Interferon gama/genética , Proteínas de Protozoários/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos Endogâmicos C57BLRESUMO
Toxoplasma gondii secretes various virulence effector molecules into host cells to disrupt host interferon-γ (IFN-γ)-dependent immunity. Among these effectors, ROP18 directly phosphorylates and inactivates IFN-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), leading to the subversion of IFN-inducible GTPase-induced cell-autonomous immunity. The modes of action of ROP18 have been studied extensively; however, little is known about the molecular mechanisms by which ROP18 is produced in the parasite itself. Here, we report the role of T. gondii transcription factor IWS1 in ROP18 mRNA expression in the parasite. Compared with wild-type virulent type I T. gondii, IWS1-deficient parasites showed dramatically increased loading of IRGs and GBPs onto the parasitophorous vacuole membrane (PVM). Moreover, IWS1-deficient parasites displayed decreased virulence in wild-type mice but retained normal virulence in mice lacking the IFN-γ receptor. Furthermore, IWS1-deficient parasites showed severely decreased ROP18 mRNA expression; however, tagged IWS1 did not directly bind with genomic regions of the ROP18 locus. Ectopic expression of ROP18 in IWS1-deficient parasites restored the decreased loading of effectors onto the PVM and in vivo virulence in wild-type mice. Taken together, these data demonstrate that T. gondii IWS1 indirectly regulates ROP18 mRNA expression to determine fitness in IFN-γ-activated host cells and mice. IMPORTANCE The parasite Toxoplasma gondii has a counterdefense system against interferon-γ (IFN-γ)-dependent host immunity which relies on the secretion of parasite effector proteins. ROP18 is one of the effector, which is released into host cells to inactivate IFN-γ-dependent anti-Toxoplasma host proteins. The mechanism by which Toxoplasma ROP18 subverts host immunity has been extensively analyzed, but how Toxoplasma produces this virulence factor remains unclear. Here, we show that Toxoplasma transcription factor IWS1 is important for ROP18 mRNA expression in the parasite. Loss of IWS1 from virulent Toxoplasma leads to dramatically decreased ROP18 mRNA expression, resulting in profoundly decreased virulence due to greater activity of IFN-γ-dependent host immune responses. Thus, Toxoplasma prepares the critical virulence factor ROP18 via an IWS1-dependent system to negate IFN-γ-dependent antiparasitic immunity and thus survive in the host.