Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dev Biol ; 509: 59-69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373693

RESUMO

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Tamanho Corporal/genética
2.
Cancer Sci ; 114(1): 25-33, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285487

RESUMO

Phosphatase of regenerating liver (PRL) is a family of protein tyrosine phosphatases (PTPs) that are anchored to the plasma membrane by prenylation. They are frequently overexpressed in various types of malignant cancers and their roles in cancer progression have received considerable attention. Mutational analyses of PRLs have shown that their intrinsic phosphatase activity is dispensable for tumor formation induced by PRL overexpression in a lung metastasis model using melanoma cells. Instead, PRLs directly bind to cyclin M (CNNM) Mg2+ exporters in the plasma membrane and potently inhibit their Mg2+ export activity, resulting in an increase in intracellular Mg2+ levels. Experiments using mammalian culture cells, mice, and C. elegans have collectively revealed that dysregulation of Mg2+ levels severely affects ATP and reactive oxygen species (ROS) levels as well as the function of Ca2+ -permeable channels. Moreover, PRL overexpression altered the optimal pH for cell proliferation from normal 7.5 to acidic 6.5, which is typically observed in malignant tumors. Here, we review the phosphatase-independent biological functions of PRLs, focusing on their interactions with CNNM Mg2+ exporters in cancer progression.


Assuntos
Caenorhabditis elegans , Neoplasias Pulmonares , Animais , Camundongos , Caenorhabditis elegans/metabolismo , Proteínas Tirosina Fosfatases/genética , Membrana Celular/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo
3.
PLoS Genet ; 12(8): e1006276, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27564576

RESUMO

Mg2+ serves as an essential cofactor for numerous enzymes and its levels are tightly regulated by various Mg2+ transporters. Here, we analyzed Caenorhabditis elegans strains carrying mutations in genes encoding cyclin M (CNNM) Mg2+ transporters. We isolated inactivating mutants for each of the five Caenorhabditis elegans cnnm family genes, cnnm-1 through cnnm-5. cnnm-1; cnnm-3 double mutant worms showed various phenotypes, among which the sterile phenotype was rescued by supplementing the media with Mg2+. This sterility was caused by a gonadogenesis defect with severely attenuated proliferation of germ cells. Using this gonadogenesis defect as an indicator, we performed genome-wide RNAi screening, to search for genes associated with this phenotype. The results revealed that RNAi-mediated inactivation of several genes restores gonad elongation, including aak-2, which encodes the catalytic subunit of AMP-activated protein kinase (AMPK). We then generated triple mutant worms for cnnm-1; cnnm-3; aak-2 and confirmed that the aak-2 mutation also suppressed the defective gonadal elongation in cnnm-1; cnnm-3 mutant worms. AMPK is activated under low-energy conditions and plays a central role in regulating cellular metabolism to adapt to the energy status of cells. Thus, we provide genetic evidence linking Mg2+ homeostasis to energy metabolism via AMPK.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Cátions/genética , Ciclinas/genética , Longevidade/genética , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/genética , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Ciclinas/biossíntese , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Magnésio/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Família Multigênica/genética , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética
4.
J Am Soc Nephrol ; 27(7): 1925-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26609120

RESUMO

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.


Assuntos
Ácidos Indolacéticos/farmacologia , Túbulos Renais/citologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenilbutiratos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Biochem Biophys Res Commun ; 459(1): 66-70, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721669

RESUMO

We previously generated mito-mice-tRNA(Lys7731) as a model for primary prevention of mitochondrial diseases. These mice harbour a G7731A mtDNA mutation in the tRNA(Lys) gene, but express only muscle weakness and short body length by four months. Here, we examined the effects of their aging on metabolic and histologic features. Unlike young mito-mice-tRNA(Lys7731), aged mito-mice-tRNA(Lys7731) developed muscle atrophy, renal failures, and various metabolic abnormalities, such as lactic acidosis and anemia, characteristic of patients with mitochondrial diseases. These observations provide convincing evidence that the respiration defects induced by high G7731A mtDNA levels cause these late-onset disorders that are relevant to mitochondrial diseases.


Assuntos
Doenças Mitocondriais/genética , Mutação , RNA de Transferência de Lisina/genética , Idade de Início , Envelhecimento/genética , Animais , DNA Mitocondrial , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos , Camundongos Mutantes , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/mortalidade , Doenças Mitocondriais/patologia
6.
Proc Natl Acad Sci U S A ; 109(26): 10528-33, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689997

RESUMO

It has been hypothesized that respiration defects caused by accumulation of pathogenic mitochondrial DNA (mtDNA) mutations and the resultant overproduction of reactive oxygen species (ROS) or lactates are responsible for aging and age-associated disorders, including diabetes and tumor development. However, there is no direct evidence to prove the involvement of mtDNA mutations in these processes, because it is difficult to exclude the possible involvement of nuclear DNA mutations. Our previous studies resolved this issue by using an mtDNA exchange technology and showed that a G13997A mtDNA mutation found in mouse tumor cells induces metastasis via ROS overproduction. Here, using transmitochondrial mice (mito-mice), which we had generated previously by introducing G13997A mtDNA from mouse tumor cells into mouse embryonic stem cells, we provide convincing evidence supporting part of the abovementioned hypothesis by showing that G13997A mtDNA regulates diabetes development, lymphoma formation, and metastasis--but not aging--in this model.


Assuntos
DNA Mitocondrial/genética , Diabetes Mellitus Experimental/genética , Linfoma/genética , Doenças Mitocondriais/genética , Mutação , Células 3T3 , Animais , Sequência de Bases , Linhagem Celular Transformada , Primers do DNA , Camundongos , Fenótipo , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio/metabolismo
7.
Sci Rep ; 11(1): 3980, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597597

RESUMO

Adenomatous polyposis coli (APC) is a tumor-suppressing protein whose inactivation triggers the formation of colorectal polyps. Numerous studies using cell lines or genetically engineered mice have revealed its role in suppressing Wnt/ß-catenin signaling pathway and regulating cell proliferation and differentiation. Here, we performed genetic analyses of APC using a three-dimensional organoid culture of mouse colon epithelia, which enables the detailed examination of epithelial properties. Analyses of Apc-knockout colon organoids not only confirmed the importance of APC in suppressing Wnt/ß-catenin signaling and regulating cell differentiation, but also revealed several novel features: a significant decrease in proliferating speed and an increase in cross-sectional area of cells. Moreover, we found a significant number of lysozyme-positive Paneth-like cells, which were never observed in wild-type colon tissues or organoids, but have been reported to emerge in colon cancers. Therefore, APC autonomously suppresses ectopic differentiation into lysozyme-positive cells, specifically in the colon epithelia. Colon organoids would be an ideal material to investigate the molecular mechanism and biological importance of the ectopic differentiation associated with cancer development.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Células Epiteliais/metabolismo , Organoides/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Colo/citologia , Neoplasias do Colo/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt
8.
Antioxid Redox Signal ; 33(1): 20-34, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148064

RESUMO

Aims: Mg2+ is fundamental for life, and its shortage severely impairs vital functions. However, whether excessive Mg2+ has beneficial or adverse effects has remained unknown. To clarify this issue, we analyzed the effect of suppressing the functions of Cyclin M (CNNM) Mg2+ efflux transporters in various experimental systems. Results: Investigation of short-lived Caenorhabditis elegans worms mutated for CNNM genes revealed reactive oxygen species (ROS) augmentation in intestinal cells, coincidently with high levels of Mg2+. Knockdown of gtl-1, encoding Mg2+-incorporating channel into intestinal cells, reduced ROS levels and restored life span, confirming the causative role of excessive Mg2+. Also, inactivation of orthologous CNNM in human cultured cells and mice by RNA interference, expression of CNNM-inhibiting protein, phosphatase of regenerating liver 3, or gene knockout resulted in ROS overproduction. Moreover, biochemical analyses revealed that excessive Mg2+ stimulates adenosine triphosphate overproduction and accelerates mitochondrial electron transport, whose suppression shut down ROS generation. Innovation and Conclusion: These results provide definitive evidence that excessive Mg2+ drives overproduction of ROS by affecting energy metabolism, implying the crucial importance of the tight regulation of intracellular Mg2+ levels.


Assuntos
Trifosfato de Adenosina/biossíntese , Homeostase , Intestinos/fisiologia , Magnésio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans/fisiologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Camundongos , Mitocôndrias/metabolismo , Interferência de RNA
9.
Dev Cell ; 55(4): 387-397.e8, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32918875

RESUMO

Extracellular pH is usually maintained around 7.4 in multicellular organisms, and cells are optimized to proliferate under this condition. Here, we find cells can adapt to a more acidic pH of 6.5 and become addicted to this acidic microenvironment by expressing phosphatase of regenerating liver (PRL), a driver of cancer malignancy. Genome-scale CRISPR-Cas9 knockout screening and subsequent analyses revealed that PRL promotes H+ extrusion and acid addiction by stimulating lysosomal exocytosis. Further experiments using cultured cells and Caenorhabditis elegans clarified the molecular link between PRL and lysosomal exocytosis across species, involving activation of lysosomal Ca2+ channel TRPML by ROS. Indeed, disruption of TRPML in cancer cells abolished PRL-stimulated lysosomal exocytosis, acid addiction, and metastasis. Thus, PRL is the molecular switch turning cells addicted to an acidic condition, which should benefit cancer cells to thrive in an acidic tumor microenvironment.


Assuntos
Ácidos/metabolismo , Exocitose , Proteínas Imediatamente Precoces/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/metabolismo , Sequência Conservada , Cães , Evolução Molecular , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Metástase Neoplásica
10.
FEBS Lett ; 582(23-24): 3525-30, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18805414

RESUMO

We addressed the issue of whether enhanced glycolysis caused by mtDNA mutations independently induces metastasis in tumor cells using mtDNA transfer technology. The resultant trans-mitochondrial cybrids sharing the same nuclear background of poorly metastatic carcinoma P29 cells, P29mtA11 and P29mtDelta cybrids, possessed mtDNA with a G13997A mutation from highly metastatic carcinoma A11 cells and mtDNA with a 4696bp deletion mutation, respectively. The P29mtDelta cybrids expressed enhanced glycolysis, but did not express ROS overproduction and high metastatic potential, whereas P29mtA11 cybrids showed enhanced glycolysis, ROS overproduction, and high metastatic potential. Thus, enhanced glycolysis alone does not induce metastasis in the cybrids.


Assuntos
DNA Mitocondrial/genética , Glicólise/genética , Mitocôndrias/metabolismo , Metástase Neoplásica/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Respiração Celular/genética , Genótipo , Camundongos , Mitocôndrias/genética , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Transfecção
11.
Sci Rep ; 8(1): 425, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323231

RESUMO

Accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for human aging and age-associated mitochondrial respiration defects. However, our previous findings suggested an alternative hypothesis of human aging-that epigenetic changes but not mutations regulate age-associated mitochondrial respiration defects, and that epigenetic downregulation of nuclear-coded genes responsible for mitochondrial translation [e.g., glycine C-acetyltransferase (GCAT), serine hydroxymethyltransferase 2 (SHMT2)] is related to age-associated respiration defects. To examine our hypothesis, here we generated mice deficient in Gcat or Shmt2 and investigated whether they have respiration defects and premature aging phenotypes. Gcat-deficient mice showed no macroscopic abnormalities including premature aging phenotypes for up to 9 months after birth. In contrast, Shmt2-deficient mice showed embryonic lethality after 13.5 days post coitum (dpc), and fibroblasts obtained from 12.5-dpc Shmt2-deficient embryos had respiration defects and retardation of cell growth. Because Shmt2 substantially controls production of N-formylmethionine-tRNA (fMet-tRNA) in mitochondria, its suppression would reduce mitochondrial translation, resulting in expression of the respiration defects in fibroblasts from Shmt2-deficient embryos. These findings support our hypothesis that age-associated respiration defects in fibroblasts of elderly humans are caused not by mtDNA mutations but by epigenetic regulation of nuclear genes including SHMT2.


Assuntos
Senilidade Prematura/genética , Epigênese Genética , Genes Letais , Glicina Hidroximetiltransferase/genética , Mitocôndrias/fisiologia , Acetiltransferases/deficiência , Acetiltransferases/genética , Animais , Células Cultivadas , Desenvolvimento Embrionário , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Glicina Hidroximetiltransferase/deficiência , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Modelos Animais , N-Formilmetionina/metabolismo , RNA de Transferência/genética
12.
Curr Opin Genet Dev ; 38: 63-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27078865

RESUMO

The mitochondria theory of aging proposes that accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations, and the resultant respiration defects, are responsible not only for mitochondrial diseases but also for aging and age-associated disorders, including tumor development. This theory is partly supported by results obtained from our transmitochondrial mice (mito-mice), which harbour mtDNA with mutations that are orthologous to those found in patients with mitochondrial diseases: mito-mice express disease phenotypes only when they express respiration defects caused by accumulation of mutated mtDNA. With regard to tumor development, specific mtDNA mutations that induce reactive oxygen species (ROS) enhance malignant transformation of lung carcinoma cells to cells with high metastatic potential. However, age-associated respiration defects in elderly human fibroblasts are due not to mtDNA mutations but to epigenetic regulation of nuclear-coded genes, as indicated by the fact that normal respiratory function is restored by reprogramming of elderly fibroblasts.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Neoplasias/genética , Envelhecimento/genética , Envelhecimento/patologia , Epigênese Genética , Humanos , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Mutação/genética , Metástase Neoplásica , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
13.
PLoS One ; 10(3): e0118561, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738506

RESUMO

We previously found that mouse mitochondrial DNA (mtDNA) with a G13997A mutation (G13997A mtDNA) controls not only the transformation of cultured lung carcinoma cells from poorly metastatic into highly metastatic cells, but also the transformation of lymphocytes into lymphomas in living C57BL/6 (B6) mice. Because the nuclear genetic background of the B6 strain makes the strain prone to develop lymphomas, here we examined whether G13997A mtDNA independently induces lymphoma development even in mice with the nuclear genetic background of the A/J strain, which is not prone to develop lymphomas. Our results showed that the B6 nuclear genetic background is required for frequent lymphoma development in mice with G13997A mtDNA. Moreover, G13997A mtDNA in mice did not enhance the malignant transformation of lung adenomas into adenocarcinomas or that of hepatocellular carcinomas from poorly metastatic into highly metastatic carcinomas. Therefore, G13997A mtDNA enhances the frequency of lymphoma development under the abnormalities in the B6 nuclear genome, and does not independently control tumor development and tumor progression.


Assuntos
Carcinogênese/genética , Núcleo Celular/genética , DNA Mitocondrial/genética , Patrimônio Genético , Linfoma/genética , Linfoma/patologia , Mitocôndrias/genética , Proteínas Quinases Ativadas por AMP , Adenoma/induzido quimicamente , Adenoma/genética , Adenoma/patologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Progressão da Doença , Genômica , Endogamia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Metástase Neoplásica , Proteínas Serina-Treonina Quinases/deficiência , Uretana/efeitos adversos
14.
Sci Rep ; 5: 10434, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26000717

RESUMO

Age-associated accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for the age-associated mitochondrial respiration defects found in elderly human subjects. We carried out reprogramming of human fibroblast lines derived from elderly subjects by generating their induced pluripotent stem cells (iPSCs), and examined another possibility, namely that these aging phenotypes are controlled not by mutations but by epigenetic regulation. Here, we show that reprogramming of elderly fibroblasts restores age-associated mitochondrial respiration defects, indicating that these aging phenotypes are reversible and are similar to differentiation phenotypes in that both are controlled by epigenetic regulation, not by mutations in either the nuclear or the mitochondrial genome. Microarray screening revealed that epigenetic downregulation of the nuclear-coded GCAT gene, which is involved in glycine production in mitochondria, is partly responsible for these aging phenotypes. Treatment of elderly fibroblasts with glycine effectively prevented the expression of these aging phenotypes.


Assuntos
Aciltransferases/genética , Envelhecimento , Epigênese Genética , Glicina Hidroximetiltransferase/genética , Lipase/genética , Mitocôndrias/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Idoso de 80 Anos ou mais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Criança , DNA Mitocondrial/análise , Fibroblastos/citologia , Fibroblastos/metabolismo , Dosagem de Genes , Glicina/biossíntese , Glicina Hidroximetiltransferase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Lipase/antagonistas & inibidores , Lipase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
15.
Exp Anim ; 63(4): 459-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048265

RESUMO

Because of the difficulty to exclude possible involvement of nuclear DNA mutations, it has been a controversial issue whether pathogenic mutations in mitochondrial DNA (mtDNA) and the resultant respiration defects are involved in tumor development. To address this issue, our previous study generated transmitochondrial mice (mito-mice-ND6(13997)), which possess the nuclear and mtDNA backgrounds derived from C57BL/6J (B6) strain mice except that they carry B6 mtDNA with a G13997A mutation in the mt-Nd6 gene. Because aged mito-mice-ND6(13997) simultaneously showed overproduction of reactive oxygen species (ROS) in bone marrow cells and high frequency of lymphoma development, current study examined the effects of administrating a ROS scavenger on the frequency of lymphoma development. We used N-acetylcysteine (NAC) as a ROS scavenger, and showed that NAC administration prevented lymphoma development. Moreover, its administration induced longevity in mito-mice-ND6(13997). The gene expression profiles in bone marrow cells indicated the upregulation of the Fasl gene, which can be suppressed by NAC administration. Given that natural-killer (NK) cells mediate the apoptosis of various tumor cells via enhanced expression of genes encoding apoptotic ligands including Fasl gene, its overexpression would reflect the frequent lymphoma development in bone marrow cells. These observations suggest that continuous administration of an antioxidant would be an effective therapeutics to prevent lymphoma development enhanced by ROS overproduction.


Assuntos
Acetilcisteína/administração & dosagem , Antioxidantes/administração & dosagem , DNA Mitocondrial/genética , Sequestradores de Radicais Livres/administração & dosagem , Linfoma/etiologia , Linfoma/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose , Células da Medula Óssea/metabolismo , Fosfatos de Dinucleosídeos , Proteína Ligante Fas/genética , Feminino , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células Matadoras Naturais/fisiologia , Linfoma/genética , Linfoma/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
16.
Exp Anim ; 63(1): 21-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24521860

RESUMO

Previous reports have shown that transmitochondrial mito-mice with nuclear DNA from Mus musculus and mtDNA from M. spretus do not express respiration defects, whereas those with mtDNA from Rattus norvegicus cannot be generated from ES cybrids with mtDNA from R. norvegicus due to inducing significant respiration defects and resultant losing multipotency. Here, we isolated transmitochondrial cybrids with mtDNA from various rodent species classified between M. spretus and R. norvegicus, and compared the O2 consumption rates. The results showed a strong negative correlation between phylogenetic distance and reduction of O2 consumption rates, which would be due to the coevolution of nuclear and mitochondrial genomes and the resultant incompatibility between the nuclear genome from M. musculus and the mitochondrial genome from the other rodent species. These observations suggested that M. caroli was an appropriate mtDNA donor to generate transmitochondrial mito-mice with nuclear DNA from M. musculus. Then, we generated ES cybrids with M. caroli mtDNA, and found that these ES cybrids expressed respiration defects without losing multipotency and can be used to generate transmitochondrial mito-mice expressing mitochondrial disorders.


Assuntos
DNA Mitocondrial/genética , Transferência Genética Horizontal/genética , Camundongos/genética , Doenças Mitocondriais/genética , Mutação , Ratos/genética , Animais , Células Cultivadas , DNA Mitocondrial/metabolismo , Células-Tronco Embrionárias , Evolução Molecular , Camundongos Endogâmicos BALB C , Camundongos Nus , Consumo de Oxigênio , Filogenia
17.
PLoS One ; 8(2): e55789, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418460

RESUMO

Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Linfoma de Células B/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Envelhecimento/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Alopecia/genética , Alopecia/metabolismo , Animais , Células Cultivadas , DNA Mitocondrial/metabolismo , Cifose/genética , Cifose/metabolismo , Linfoma de Células B/metabolismo , Camundongos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mutação , Consumo de Oxigênio , Fenótipo
19.
FEBS Lett ; 584(18): 3943-8, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20674568

RESUMO

To investigate the effects of respiration defects on the disease phenotypes, we generated trans-mitochondrial mice (mito-mice) by introducing a mutated G13997A mtDNA, which specifically induces respiratory complex I defects and metastatic potentials in mouse tumor cells. First, we obtained ES cells and chimeric mice containing the G13997A mtDNA, and then we generated mito-mice carrying the G13997A mtDNA via its female germ line transmission. The three-month-old mito-mice showed complex I defects and lactate overproduction, but showed no other phenotypes related to mitochondrial diseases or tumor formation, suggesting that aging or additional nuclear abnormalities are required for expression of other phenotypes.


Assuntos
Carcinoma/genética , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Neoplasias Pulmonares/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Fatores Etários , Envelhecimento/genética , Animais , Carcinoma/patologia , Quimera , Células-Tronco Embrionárias , Feminino , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doenças Mitocondriais/patologia , Metástase Neoplásica , Atrofia Óptica Hereditária de Leber/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa