Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(11): 2547-2561, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407364

RESUMO

Saliva substitutes are human-made formulations extensively used in medicine, food, and pharmaceutical research to emulate human saliva's biochemical, tribological, and rheological properties. Even though extensional flows involving saliva are commonly encountered in situations such as swallowing, coughing, sneezing, licking, drooling, gleeking, and blowing spit bubbles, rheological evaluations of saliva and its substitutes in most studies rely on measured values of shear viscosity. Natural saliva possesses stringiness or spinnbarkeit, governed by extensional rheology response, which cannot be evaluated or anticipated from the knowledge of shear rheology response. In this contribution, we comprehensively examine the rheology of twelve commercially available saliva substitutes using torsional rheometry for rate-dependent shear viscosity and dripping-onto-substrate (DoS) protocols for extensional rheology characterization. Even though most formulations are marketed as having suitable rheology, only three displayed measurable viscoelasticity and strain-hardening. Still, these too, failed to emulate the viscosity reduction with the shear rate observed for saliva or match perceived stringiness. Finally, we explore the challenges in creating saliva-like formulations for dysphagia patients and opportunities for using DoS rheometry for diagnostics and designing biomimetic fluids.


Assuntos
Saliva , Humanos , Saliva/fisiologia , Reologia/métodos , Viscosidade
2.
Langmuir ; 39(17): 6102-6112, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074870

RESUMO

Sodium caseinates (NaCas), derived from milk proteins called caseins, are often added to food formulations as emulsifiers, foaming agents, and ingredients for producing dairy products. In this contribution, we contrast the drainage behavior of single foam films made with micellar NaCas solutions with well-established features of stratification observed for the micellar sodium dodecyl sulfate (SDS) foam films. In reflected light microscopy, the stratified SDS foam films display regions with distinct gray colors due to differences in interference intensity from coexisting thick-thin regions. Using IDIOM (interferometry digital imaging optical microscopy) protocols we pioneered for mapping nanotopography of foam films, we showed that drainage via stratification in SDS films proceeds by the expansion of flat domains that are thinner than surrounding by a concentration-dependent step-size, and nonflat features (nanoridges and mesas) form at the moving front. Furthermore, stratifying SDS foam films show stepwise thinning, such that the step-size and terminal film thickness decrease with concentration. Here we visualize the nanotopography in protein films with high spatiotemporal resolution using IDIOM protocols to address two long-standing questions. Do protein foam films formulated with NaCas undergo drainage via stratification? Are thickness transitions and variations in protein foam films determined by intermicellar interactions and supramolecular oscillatory disjoining pressure? In contrast with foam films containing micellar SDS, we find that micellar NaCas foam films display just one step, nonflat and noncircular domains that expand without forming nanoridges and a terminal thickness that increases with NaCas concentration. We infer that the differences in adsorbing and self-assembling unimers triumph over any similarities in the structure and interactions of their micelles.


Assuntos
Caseínas , Micelas , Caseínas/química , Tensoativos/química , Dodecilsulfato de Sódio/química
3.
Soft Matter ; 19(48): 9413-9427, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014426

RESUMO

The rheology, stability, texture, and taste of mayonnaise, a dense oil-in-water (O/W) emulsion, are determined by interfacially active egg lipids and proteins. Often mayonnaise is presented as a challenging example of an egg-based food material that is hard to emulate using plant-based or vegan ingredients. In this contribution, we characterize the flow behavior of animal-based and plant-based mayo emulsions, seeking to decipher the signatures that make the real mayonnaise into such an appetizing complex fluid. We find that commercially available vegan mayos can emulate the apparent yield stress and shear thinning of yolk-based mayonnaise by the combined influence of plant-based proteins (like those extracted from chickpeas) and polysaccharide thickeners. However, we show that the dispensing and dipping behavior of egg-based and vegan mayos display striking differences in neck shape, sharpness, and length. The ratio of apparent extensional to shear yield stress value is found to be larger than the theoretically predicted square root of three for all mayo emulsions. The analysis of neck radius evolution of these extension thinning yield stress fluids reveals that even when the power law exponent governing the intermediate pinching dynamics is similar to the exponent obtained from the shear flow curve, the terminal pinching dynamics show strong local effects, possibly influenced by interstitial fluid properties, finite drop size and deformations, and capillarity.


Assuntos
Cicer , Animais , Humanos , Veganos , Reologia , Emulsões
4.
Biomater Sci ; 10(11): 2892-2906, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35446327

RESUMO

Thermoplastic elastomers are widely used in the medical industry for advanced medical and healthcare products, helping millions of patients achieve a better quality of life. Yet, microbial contamination and material-associated biofilms on devices remain a critical challenge because it is challenging for currently available materials to provide critical antifouling properties, thermoplasticity, and elastic properties simultaneously. We developed a highly flexible zwitterionic thermoplastic polyurethane with critical antifouling properties. A series of poly((diethanolamine ethyl acetate)-co-poly(tetrahydrofuran)-co-(1,6-diisocyanatohexane)) (PCB-PTHFUs) were synthesized. The PCB-PTHFUs exhibit a breaking strain of more than 400%, a high resistance to fibroblast cells for 24 h, and the excellent ability to prevent biofilm formation for up to three weeks. This study lays a foundation for clarifying the structure-function relationships of zwitterionic polymers. This thermoplastic PCB-PTHFU platform, with its unmatched antifouling properties and high elasticity, has potential for implanted medical devices and a broad spectrum of applications that suffer from biofouling, such as material-associated infection.


Assuntos
Incrustação Biológica , Elastômeros , Incrustação Biológica/prevenção & controle , Humanos , Polímeros , Poliuretanos/farmacologia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa