RESUMO
The bile salt export pump (ABCB11/BSEP) is a hepatocyte plasma membrane-resident protein translocating bile salts into bile canaliculi. The sequence alignment of the four full-length transporters of the ABCB subfamily (ABCB1, ABCB4, ABCB5 and ABCB11) indicates that the NBD-NBD contact interface of ABCB11 differs from that of other members in only four residues. Notably, these are all located in the noncanonical nucleotide binding site 1 (NBS1). Substitution of all four deviant residues with canonical ones (quadruple mutant) significantly decreased the transport activity of the protein. In this study, we mutated two deviant residues in the signature sequence to generate a double mutant (R1221G/E1223Q). Furthermore, a triple mutant (E502S/R1221G/E1223Q) was generated, in which the deviant residues of the signature sequence and Q-loop were mutated concurrently to canonical residues. The double and triple mutants showed 80% and 60%, respectively, of the activity of wild-type BSEP. As expected, an increasing number of mutations gradually impair transport as an intricate network of interactions within the ABC proteins ensures proper functioning.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Nucleotídeos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Nucleotídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação/genética , Sítios de LigaçãoRESUMO
KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.
Assuntos
Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Magnésio , Proteínas de Plantas , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnésio/metabolismo , Magnésio/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amido/metabolismo , Perfilação da Expressão Gênica , Brotos de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente ModificadasRESUMO
Mobile cloud computing (MCC) provides resources to users to handle smart mobile applications. In MCC, task scheduling is the solution for mobile users' context-aware computation resource-rich applications. Most existing approaches have achieved a moderate service reliability rate due to a lack of instance-centric resource estimations and task offloading, a statistical NP-hard problem. The current intelligent scheduling process cannot address NP-hard problems due to traditional task offloading approaches. To address this problem, the authors design an efficient context-aware service offloading approach based on instance-centric measurements. The revised machine learning model/algorithm employs task adaptation to make decisions regarding task offloading. The proposed MCVS scheduling algorithm predicts the usage rates of individual microservices for a practical task scheduling scheme, considering mobile device time, cost, network, location, and central processing unit (CPU) power to train data. One notable feature of the microservice software architecture is its capacity to facilitate the scalability, flexibility, and independent deployment of individual components. A series of simulation results show the efficiency of the proposed technique based on offloading, CPU usage, and execution time metrics. The experimental results efficiently show the learning rate in training and testing in comparison with existing approaches, showing efficient training and task offloading phases. The proposed system has lower costs and uses less energy to offload microservices in MCC. Graphical results are presented to define the effectiveness of the proposed model. For a service arrival rate of 80%, the proposed model achieves an average 4.5% service offloading rate and 0.18% CPU usage rate compared with state-of-the-art approaches. The proposed method demonstrates efficiency in terms of cost and energy savings for microservice offloading in mobile cloud computing (MCC).
RESUMO
A vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastructure incorporating centralized and decentralized control mechanisms, orchestrating seamless data exchange among vehicles. This intricate communication system relies on the advanced capabilities of 5G connectivity, employing specialized topological arrangements to enhance data packet transmission. These vehicles communicate amongst themselves and establish connections with roadside units (RSUs). In the dynamic landscape of vehicular communication, disruptions, especially in scenarios involving high-speed vehicles, pose challenges. A notable concern is the emergence of black hole attacks, where a vehicle acts maliciously, obstructing the forwarding of data packets to subsequent vehicles, thereby compromising the secure dissemination of content within the VANET. We present an intelligent cluster-based routing protocol to mitigate these challenges in VANET routing. The system operates through two pivotal phases: first, utilizing an artificial neural network (ANN) model to detect malicious nodes, and second, establishing clusters via enhanced clustering algorithms with appointed cluster heads (CH) for each cluster. Subsequently, an optimal path for data transmission is predicted, aiming to minimize packet transmission delays. Our approach integrates a modified ad hoc on-demand distance vector (AODV) protocol for on-demand route discovery and optimal path selection, enhancing request and reply (RREQ and RREP) protocols. Evaluation of routing performance involves the BHT dataset, leveraging the ANN classifier to compute accuracy, precision, recall, F1 score, and loss. The NS-2.33 simulator facilitates the assessment of end-to-end delay, network throughput, and hop count during the path prediction phase. Remarkably, our methodology achieves 98.97% accuracy in detecting black hole attacks through the ANN classification model, outperforming existing techniques across various network routing parameters.
RESUMO
The intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes' infrastructure is close to VANET, fostering an environment favorable to smart cars with IT equipment and effective task management oversight. Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET. It is critical to satisfy the vehicles' requirements for minimal latency and fast reaction times while offloading duties to the fog layer. We proposed a fuzzy logic-based task scheduling system in VANET to minimize latency and improve the enhanced response time when offloading tasks in the IoV. The proposed method effectively transfers workloads to the fog computing layer while considering the constrained resources of car nodes. After choosing a suitable processing unit, the algorithm sends the job and its associated resources to the fog layer. The dataset is related to crisp values for fog computing for system utilization, latency, and task deadline time for over 5000 values. The task execution, latency, deadline of task, storage, CPU, and bandwidth utilizations are used for fuzzy set values. We proved the effectiveness of our proposed task scheduling framework via simulation tests, outperforming current algorithms in terms of task ratio by 13%, decreasing average turnaround time by 9%, minimizing makespan time by 15%, and effectively overcoming average latency time within the network parameters. The proposed technique shows better results and responses than previous techniques by scheduling the tasks toward fog layers with less response time and minimizing the overall time from task submission to completion.
RESUMO
A vehicular ad hoc network (VANET) is a technique that uses vehicles with the ability to sense data from the environment and use it for their safety measures. Flooding is a commonly used term used for sending network packets. VANET may cause redundancy, delay, collision, and the incorrect receipt of the messages to their destination. Weather information is one of the most important types of information used for network control and provides an enhanced version of the network simulation environments. The network traffic delay and packet losses are the main problems identified inside the network. In this research, we propose a routing protocol which can transmit the weather forecasting information on demand based on source vehicle to destination vehicles, with the minimum number of hop counts, and provide significant control over network performance parameters. We propose a BBSF-based routing approach. The proposed technique effectively enhances the routing information and provides the secure and reliable service delivery of the network performance. The results taken from the network are based on hop count, network latency, network overhead, and packet delivery ratio. The results effectively show that the proposed technique is reliable in reducing the network latency, and that the hop count is minimized when transferring the weather information.
Assuntos
Blockchain , Algoritmos , Redes de Comunicação de Computadores , Tecnologia sem Fio , Tempo (Meteorologia)RESUMO
BACKGROUND: Chilli is an important commercial crop with positive returns tendency. Phytophthora root rot causes drastic damage to chilli plant. Dearth of detecting marker trait associations is a major hinderance in practicing marker assisted selection in chilli breeding. METHODS AND RESULTS: Herein, 110 chilli accessions were assessed for 15 agronomic traits under control and disease infected conditions for two crop seasons (2018-2019). The SSR genotyping revealed high values of major allele frequency (MAF = 0.70), genetic diversity (GD = 0.39) and Polymorphic Information Content (PIC = 0.31). Principal coordinate analysis and population structure analysis showed distribution of diverse genotypes in all groups by dividing 110 genotypes in three populations and nine sub-populations. The UPGMA based Archaeopteryx tree was in concordance with population structure analysis. Linkage disequilibrium analysis evaluated that LD decays within 3-10 bp. Marker trait association (MTA) revealed the associations of 35 SSRs with 14 morphological traits. The significant MTA for marker CAeMS073 with relative leaf damage (RLD, 0.183 R2) under control and treated conditions was consistently observed in both models. The markers, CAMS173 and CAMS194 were found to be strongly associated with RLD and Disease Index (DI), respectively. The absence of MTA was detected for height of first branch. CONCLUSION: The MTAs reported in this study can facilitate marker assisted breeding for developing chilli germplasm resistant against Phytophthora capsici.
Assuntos
Phytophthora , Variação Genética/genética , Genótipo , Fenótipo , Melhoramento VegetalRESUMO
BACKGROUND: Considerable production losses are caused by heat and drought stress in okra. Germplasm evaluation at genetic level is essential for the selection of promising genotypes. Lack of genomic information of okra limits the use of genetic markers. However, syntenic markers of some related family could be used for molecular characterization of major economic traits. METHODS AND RESULTS: Herein, 56 okra genotypes were evaluated for drought and heat tolerance. Sixty-one expressed sequence tags (ESTs) identified for heat and drought tolerance in cotton were searched from literature surveys and databases. The identified ESTs were BLAST searched into okra unigene database. Primers of selected okra unigenes were synthesized and amplified in all genotypes using standard polymerase chain reaction (PCR) protocol. Marker trait association (MTA) of the syntenic unigenes were identified between genotypic and phenotypic data on the basis of linkage disequilibrium Functional syntenic analysis revealed that out of these 61 cotton ESTs 55 had functional homology with okra unigenes. These 55 unigenes were used as markers for further analysis (amplification). Okra genotypes showed significance variations for all the physo-morphological parameters under heat and drought stress. Genotypes Perbhani Karanti, IQRA-III, Selection Super Green, Anmol and Line Bourd performed better under drought stress whereas genotypes Perbhani Karanti, IQRA-III, Green Gold, OK-1501 and Selection Super Green showed heat tolerance. Fifty markers showed amplification in okra. Fifty-six okra genotypes were clustered into three distinct populations. LD analysis has shown most significant linkage between markers Unigene43786 and Unigene3662. MTAs using MLM and GLM models revealed that 23 markers have significant associations (p < 0.05) with different traits under control and stressed conditions. Relative water content is associated with four markers (Unigene10673, Unigene99547, Unigene152901, and Unigene129684) under drought conditions. Whereas, Electrolyte leakage was associated with 3 markers (Unigene109922, Unigene28667 and Unigene146907) under heat stress. CONCLUSION: These identified unigenes may be helpful in the development of drought and heat tolerant genotypes in okra.
Assuntos
Abelmoschus , Secas , Abelmoschus/genética , Etiquetas de Sequências Expressas , Estresse Fisiológico/genética , Marcadores Genéticos/genéticaRESUMO
BACKGROUND: Peanut (Arachis hypogaea L.) production and cropping pattern is highly influenced by the climatic factors including temperature and rain pattern fluctuations. It is one of the most important cash crop in the rain fed areas of Pakistan and its production, under changing climatic conditions, that can be improved by developing short duration varieties. The present study was based on the molecular characterization of the maturity associated gene families in the peanut under two light conditions. METHODS AND RESULTS: Genomic analysis based on the in silico study of important gene families for early maturity associated attributes like flowering time, their pattern, duration and photoperiodism was done for a comprehensive mapping of maturity related genes. Phytochromes genes Phy A, Phy B and Phy E and flowering genes FT2a, Ft5a and COL2 were selected for in silico characterization for protein based analysis including Multiple Sequence Alignment (MSA), and Neighbor Joining (NJ) tree. MSA and NJ trees of the peanut with Arabidopsis thaliana and Glycine max showed a clear picture of the phylogenetic relationship on the basis of selected gene proteins. Expression profile of phytochrome and flowering genes revealed that photoperiod conditions i.e. short and long days, have great influence on the Phy A, Phy B and Phy E, Ft2a, FT5a and COL2 gene expression pattern. In current study, the relative expression of all studied genes was found higher in short day light condition at flower initiation stage of the plants than in the long light day condition with exception of COL2 gene protein. CONCLUSIONS: The molecular characterization based on the in silico study of the particular genes and qPCR based gene expression profiling of the selected genes provided an evidence of the role of these genes and their comparative analysis under two photoperiodic conditions.
Assuntos
Arabidopsis , Fitocromo , Arabidopsis/genética , Arachis/genética , Arachis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fotoperíodo , Filogenia , Fitocromo/genéticaRESUMO
Salinity is one of the most common factors affecting alfalfa (Medicago sativa L.), and NaCl is one of the main factors of salinity stress which can cause heavy losses in agricultural production in the world. The application of exogenous melatonin (MT) plays a major role in numerous plants against various stress environments. The effects of exogenous MT on the NaCl tolerance of alfalfa treated with the control, 100 µmol L-1 MT, 150 mmol L-1 NaCl, or 150 mmol L-1 NaCl+ 100 µmol L-1 MT were investigated. The results showed that MT increased growth parameters, inhibited chlorophyll degradation and promoted photosynthetic gas exchange parameters (photosynthetic rate, conductance to H2O, and transpiration rate) and stomatal opening under NaCl stress. Osmotic regulation substances such as soluble sugar, proline and glycine betaine were the highest in the NaCl treatment and the second in the NaCl+MT treatment. Nitrogen, phosphorus, potassium, calcium and magnesium were reduced and sodium was increased by NaCl, whereas these levels were reversed by the NaCl+MT treatment. MT inhibited cell membrane imperfection, lipid peroxidation and reactive oxygen species (ROS) accumulation caused by NaCl stress. MT up-regulated the gene expression and activity of antioxidant enzymes and increased the content of antioxidant non-enzyme substances to scavenge excessive ROS in NaCl-treated plants. In addition, all indicators interacted with each other to a certain extent and could be grouped according to the relative values. All variables were divided into PC 1 (89.2 %) and PC 2 (4 %). They were clustered into two categories with opposite effects, and most of them were significant variables. Hence, these findings reveal that exogenous MT alleviates the inhibitory effects of NaCl stress on photosynthesis, stomata opening, osmotic adjustment, ion balance and redox homeostasis, enhancing tolerance and growth of alfalfa. Furthermore, it suggests that MT could be implemented to improve the NaCl tolerance of alfalfa.
Assuntos
Medicago sativa , Melatonina , Antioxidantes/metabolismo , Medicago sativa/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/toxicidadeRESUMO
Grapevine is one of the most widely-planted fruit crops in the world, and is the most economically important fruit crop in the state of New York, USA. Symptoms of anthracnose on grapevine are similarly widely-reported on grapevine fruit and foliage, and such symptoms are commonly attributed to Elsinöe ampelina (Wilcox et al., 2015). However, similar symptoms, if not identical, to those associated with E. ampelina have been sporadically attributed to various species in the genus Colletotrichum. In September 2021, a survey was conducted in three research vineyards at Cornell AgriTech in Geneva, NY. Symptoms of anthracnose werebserved on four Vitis interspecific hybrid breeding lines in a 1 ha vineyard. Leaves, fruit, and petioles showing symptoms of anthracnose, i.e., sunken necrotic lesions with grayish centers and brownish margins, were collected. Symptomatic and healthy portions of surface-sterilized tissues were placed on PDA medium and incubated at 23oC for 7 days. Several petiole samples yielded colonies of white to greyish mycelium, with some red to orange pigmentation (Fig. 1A and 1B), similar to those described by Chowdappa et al. (2009) for Colletotrichum species isolated from grapevine in India. Cultures were allowed to sporulate. Slides from cultures were prepared and examined at 400X magnification. Conidia from cultures were cylindrical with rounded ends, 13.5-15.2 µm in length and 7.6-9.0 µm in width (Fig. 1C). Koch's postulates were fulfilled by inoculating detached healthy leaves of V. vinifera 'Chardonnay' that had been surface sterilized in 10% sodium hypochlorite and triple-rinsed in sterile distilled water. Drop inoculation was used from a suspension of 105 conidia/ml from the foregoing pure cultures as five 2 µL droplets per leaf. Inoculated detached leaves were maintained on water agar in a Petri dish at 23oC. Four days after inoculation, symptoms were observed and compared with the originally collected samples. Inoculated leaves displayed symptoms typically found on the collected tissues, and the original pathogen, as confirmed by colony morphology and conidial characteristics and dimensions, was reisolated from inoculated leaves, and not from non-inoculated controls. For molecular characterization, fungal DNA was isolated by using Qiagen DNeasy kit and amplified using the following primer pairs: ITS1/ITS4, TEF (Hyun et al., 2009), E. ampelina F/R (Santos et al. 2018), TUB2, ACT, HIS3, GAPDH and CHS1 (Damm et al., 2001). PCR products were purified using ExoSAP-IT, and samples were Sanger sequenced. Sequences were analyzed using Geneious Prime software, and the resulting sequences (NCBI accessions OL720215, OL720216, OL720217, OL720218, OL853836, OM982612, OM982613, OM982614, OM982615 and OM982616) had 94 to 100% identity to Colletotrichum fioriniae NCBI accessions MN944922.1, MK646015.1, MN944922.1, MN856415.1, KU847413.1, MN520490.1, MN544294.1, KY695259.1, MN535117.1 and MN544295.1. Symptoms of grapevine anthracnose caused by Colletotrichum species have been reported from India (Chowdappa et al., 2009) and Korea (Kim et al., 2021). To our knowledge this is the first report of grapevine anthracnose caused by C. fioriniae Anthracnose and ripe rot are diseases of increasing importance, particularly as new grapevine cultivars with resistance to powdery mildew or downy mildew are adopted. Taxonomy of the causal agents (E. ampelina and Colletotrichum spp.) has undergone considerable revision. Consequently, distribution and relative prevalence of the various taxa will require further study.
RESUMO
To date, research on refugee mental health has mainly focused on understanding the absence of psychopathology rather than on their well-being and associated positive aspects. The aim of this study was to examine the role of resilience, hope, belongingness, and social support in predicting satisfaction with life and flourishing among 361 minority Syrian refugees living in Iraq (age range = 18-60 years, mean = 32.57, SD = 10.05). Participants completed the Brief Resilience Scale, Adult Hope Scale, Multidimensional Scale of Perceived Social Support Scale, General Belongingness Scale, Satisfaction With Life Scale, and Flourishing Scale. Males reported significantly higher levels of resilience, belongingness, and flourishing compared to females. Demographic variables (age, gender, and economic level), resilience, hope, belongingness, and social support were correlated with life satisfaction and flourishing scores. While controlling for sociodemographic characteristics, resilience and hope were associated with life satisfaction and flourishing scores. However, belongingness and social support were only associated with flourishing scores. The findings suggest that equipping refugees with positive psychological resources could promote increased levels of life satisfaction and flourishing and thus enhance preventive psychosocial programs.
RESUMO
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Assuntos
Fatores de Transcrição , Zea mays , Sistemas de Transporte de Aminoácidos , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismoRESUMO
The phytotoxicity of nanoparticles has attracted considerable interest, given the broad applications of nanomaterials in different fields. Alfalfa (Medicago sativa L.) is a major forage crop grown worldwide with a high protein content. The molecular regulation mechanisms involved in nanomaterial-treated alfalfa were examined in this research. In our lab, 18 cDNA libraries of Golden Empress (GE) and Bara 310SC (SC) under control (CK), middle (10 g kg-1)- and high (20 g kg-1)-graphene stress treatments were constructed in 2019. All clean reads were matched to the reference Medicago_truncatula genome, the mapping ratio was higher than 50%, and a total of 3946 differentially expressed genes (DEGs) were obtained. The number of DEGs that reflect transcriptional activity is proportional to the degree of stress. For example, 1241/610 and 1794/1422 DEGs were identified as significant in the leaves of GE/SC under mid- and high-graphene treatment, respectively. Furthermore, GO analysis of the DEGs annotated in some significant biochemical process terms included 'response to abiotic stimulus', 'oxidation-reduction process', 'protein kinase activity', and 'oxidoreductase activity'. KEGG pathway analysis of the DEGs revealed strongly mediated graphene-responsive genes in alfalfa mainly linked to the 'biosynthesis of amino acids', 'isoflavonoid biosynthesis', 'linoleic acid metabolism', and 'phenylpropanoid biosynthesis' pathways. In addition, hundreds of DEGs, including photosynthetic, antioxidant enzyme, nitrogen metabolism, and metabolic sucrose and starch genes, have been identified as potentially involved in the response to graphene. Physiological findings revealed that enzymes related to the metabolism of nitrogen play a crucial role in the adaptation of graphene stress to alfalfa. Ultimately, in response to graphene stress, a preliminary regulatory mechanism was proposed for the self-protective mechanism of alfalfa, which helps to explain the phytotoxicity of the molecular mechanism of nanoparticle-treated crops.
Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Grafite/toxicidade , Medicago sativa/efeitos dos fármacos , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Medicago sativa/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismoRESUMO
MAIN CONCLUSION: Glutamine (Gln) is an efficient nitrogen source in promoting aboveground nitrogen and biomass accumulation in ZD958 (an elite maize hybrid with great potential for further genetic improvement) seedlings when conditioning a smaller but adequate root system. Amino acids account for a significant part of nitrogen (N) resources in the soil. However, how amino acid-N affects crop growth remains to be further investigated. Here, glutamine (Gln) application (80% NH4NO3 + 20% Gln; mixed N) enhanced shoot growth of the maize hybrid ZD958. N concentration in the shoot increased, which is associated with favorable increases in SPAD values, GS/GOGAT activities, and accumulation of glutamate, asparagine, total free amino acids and soluble proteins in the shoot under mixed N. On the other hand, root growth was reduced when exposed to Gln as indicated by the significantly lower dry weight, root/shoot ratio, and primary, seminal, crown, and total root lengths, as well as unfavorable physiological alterations. Up-regulation of expression of ZmAMT1.3, ZmNRT2.1, and ZmAAP2 in the root and that of ZmAMT1.1, ZmAMT1.3, and ZmLHT1 in the shoot preconditioned N over-accumulation in the shoot and facilitated shoot growth, presumably via enhancing N translocation to the shoot, when Gln was supplied. Together, Gln is an efficient N source in promoting aboveground N and biomass accumulation in ZD958 seedlings when conditioning a smaller but adequate root system. Notably, ZD958's parental lines Z58 and Chang7-2 displayed a wide range of variations in Gln responses, which may be partially attributed to single nucleotide polymorphisms (SNPs) in cis-elements and coding regions revealed in this study and much larger quantities of unidentified genetic variations between Z58 and Chang7-2. Extensive genetic divergence of these two elite inbred lines implied large potentials for further genetic improvement of ZD958 in relation to organic N use efficiency.
Assuntos
Biomassa , Glutamina/farmacologia , Hibridização Genética , Nitrogênio/metabolismo , Brotos de Planta/metabolismo , Plântula/metabolismo , Zea mays/genética , Zea mays/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Endogamia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Plântula/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimentoRESUMO
BACKGROUND: Streptococcus pneumoniae or pneumococcus is a leading cause of morbidity and mortality worldwide, specifically in relation to community-acquired pneumonia. Due to the overuse of antibiotics, S. pneumoniae has developed a high degree of resistance to a wide range of antibacterial drugs. METHODS: In this study, whole genome sequencing (WGS) was performed for 10 clinical strains of S. pneumoniae with different levels of sensitivity to standard antibiotics. The main objective was to investigate genetic changes associated with antibiotic resistance in S. pneumoniae. RESULTS: Our results showed that resistant isolates contain a higher number of non-synonymous single nucleotide polymorphisms (SNPs) as compared to susceptible isolates. We were able to identify SNPs that alter a single amino acid in many genes involved in virulence and capsular polysaccharide synthesis. In addition, 90 SNPs were only presented in the resistant isolates, and 31 SNPs were unique and had not been previously reported, suggesting that these unique SNPs could play a key role in altering the level of resistance to different antibiotics. CONCLUSION: Whole genome sequencing is a powerful tool for comparing the full genome of multiple isolates, especially those closely related, and for analysing the variations found within antibiotic resistance genes that lead to differences in antibiotic sensitivity. We were able to identify specific mutations within virulence genes related to resistant isolates. These findings could provide insights into understanding the role of single nucleotide mutants in conferring drug resistance.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções Pneumocócicas/microbiologia , Polimorfismo de Nucleotídeo Único , Streptococcus pneumoniae/genética , Humanos , Malásia , Streptococcus pneumoniae/isolamento & purificação , Sequenciamento Completo do GenomaRESUMO
Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5â¯cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5â¯cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50â¯<â¯50⯵g/mL. Extracts of U. grandiflora, C. costatus, T. peduncularis, L. eugenifolius, A. subulatum, and C. aeruginosa had good activities against P. falciparum K1 with IC50â¯<â¯10⯵g/mL. Pinoresinol isolated from C. costatus was inactive against L. donovani and P. falciparum. C. costatus extract and pinoresinol increased the sensitivity of Staphylococcus epidermidis to cefotaxime. Pinoresinol demonstrated moderate activity against influenza virus (IC50â¯=â¯30.4⯱â¯11⯵g/mL) and was active against Coxsackie virus B3 (IC50â¯=â¯7.1⯱â¯3.0⯵g/mL). ß-Amyrin from L. eugenifolius inhibited L. donovani with IC50 value of 15.4⯱â¯0.01⯵M. Furanodienone from C. aeruginosa inhibited L. donovani and P. falciparum K1 with IC50 value of 39.5⯱â¯0.2 and 17.0⯱â¯0.05⯵M, respectively. Furanodienone also inhibited the replication of influenza and Coxsackie virus B3 with IC50 value of 4.0⯱â¯0.5 and 7.2⯱â¯1.4⯵g/mL (Ribavirin: IC50: 15.6⯱â¯2.0⯵g/mL), respectively. Our study provides evidence that medicinal plants in Malaysia have potentials as a source of chemotypes for the development of anti-infective leads.
Assuntos
Anti-Infecciosos/farmacologia , Leishmania donovani/efeitos dos fármacos , Medicina Tradicional do Leste Asiático/métodos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Anti-Infecciosos/toxicidade , Apocynaceae/química , Linhagem Celular , Sinergismo Farmacológico , Enterovirus Humano B/efeitos dos fármacos , Etnofarmacologia/métodos , Furanos/química , Furanos/isolamento & purificação , Furanos/farmacologia , Furanos/toxicidade , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Concentração Inibidora 50 , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Lignanas/toxicidade , Malásia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Sesquiterpenos/toxicidade , Tabernaemontana/química , Uvaria/químicaRESUMO
For human food security, the preservation of 7.4 million ex-situ germplasm is a global priority. However, ex-situ-conserved seeds are subject to aging, which reduces their viability and ultimately results in the loss of valuable genetic material over long periods. Recent progress in seed biology and genomics has revealed new opportunities to improve the long-term storage of ex-situ seed germplasm. This review summarizes the recent improvements in seed physiology and genomics, with the intention of developing genomic tools for evaluating seed aging. Several lines of seed biology research have shown promise in retrieving viability signal from various stages of seed germination. We conclude that seed aging is associated with mitochondrial alteration and programmed cell death, DNA and enzyme repair, anti-oxidative genes, telomere length, and epigenetic regulation. Clearly, opportunities exist for observing seed aging for developing genomic tools to increment the traditional germination test for effective conservation of ex-situ germplasm.
Assuntos
Conservação dos Recursos Naturais , Plantas Comestíveis/fisiologia , Sementes/fisiologia , Envelhecimento/fisiologia , Plantas Comestíveis/genéticaRESUMO
Fish type I IFNs are classified into two groups with two (group I) or four (group II) cysteines in the mature peptide and can be further divided into four subgroups, termed IFN-a, -b, -c, and -d. Salmonids possess all four subgroups, whereas other teleost species have one or more but not all groups. In this study, we have discovered two further subgroups (IFN-e and -f) in rainbow trout Oncorhynchus mykiss and analyzed the expression of all six subgroups in rainbow trout and brown trout Salmo trutta. In rainbow trout RTG-2 and RTS-11 cells, polyinosinic-polycytidylic acid stimulation resulted in early activation of IFN-d, whereas the IFN-e subgroup containing the highest number of members showed weak induction. In contrast with the cell lines, remarkable induction of IFN-a, -b, and -c was detected in primary head kidney leukocytes after polyinosinic-polycytidylic acid treatment, whereas a moderate increase of IFNs was observed after stimulation with resiquimod. Infection of brown trout with hemorrhagic septicemia virus resulted in early induction of IFN-d, -e, and -f and a marked increase of IFN-b and IFN-c expression in kidney and spleen. IFN transcripts were found to be strongly correlated with the viral burden and with marker genes of the IFN antiviral cascade. The results demonstrate that the IFN system of salmonids is far more complex than previously realized, and in-depth research is required to fully understand its regulation and function.
Assuntos
Proteínas de Peixes/genética , Loci Gênicos/fisiologia , Interferon Tipo I/genética , Oncorhynchus mykiss/genética , Animais , Sequência de Bases , Proteínas de Peixes/imunologia , Interferon Tipo I/imunologia , Dados de Sequência Molecular , Oncorhynchus mykiss/imunologia , Especificidade de Órgãos/fisiologiaRESUMO
Tuberculosis (TB) remains a major global health problem. According to a recent World Health Organization report, it ranks as the second leading cause of death from an infectious disease worldwide. According to the "UK Health Protection Agency Tuberculosis in the UK: 2012 Report," 8963 cases were reported in the United Kingdom in 2011. London had the greatest proportion of cases in the United Kingdom and the greatest rate of disease. TB affecting the foot is rare, affecting about 10% of all skeletal TB cases. However, owing to the current patterns of global immigration, with significant volumes of people migrating out of endemic countries, it has become a disease that physicians and surgeons in developed countries should be more aware of in today's practice. To the best of our knowledge, we present the first adult case of TB of the cuboid in the United Kingdom and the first adult case documented outside of India. We present the case details and the results of a thorough review of the literature. TB of the foot and ankle poses a diagnostic challenge because of the propensity of TB to mimic other pathologic entities radiologically. Tissue diagnosis and antitubercular medication is the mainstay of diagnosis and treatment, respectively.