RESUMO
Autoantibodies against the extracellular domain of the N-methyl-d-aspartate receptor (NMDAR) NR1 subunit cause a severe and common form of encephalitis. To better understand their generation, we aimed to characterize and identify human germinal centres actively participating in NMDAR-specific autoimmunization by sampling patient blood, CSF, ovarian teratoma tissue and, directly from the putative site of human CNS lymphatic drainage, cervical lymph nodes. From serum, both NR1-IgA and NR1-IgM were detected more frequently in NMDAR-antibody encephalitis patients versus controls (both P < 0.0001). Within patients, ovarian teratoma status was associated with a higher frequency of NR1-IgA positivity in serum (OR = 3.1; P < 0.0001) and CSF (OR = 3.8, P = 0.047), particularly early in disease and before ovarian teratoma resection. Consistent with this immunoglobulin class bias, ovarian teratoma samples showed intratumoral production of both NR1-IgG and NR1-IgA and, by single cell RNA sequencing, contained expanded highly-mutated IgA clones with an ovarian teratoma-restricted B cell population. Multiplex histology suggested tertiary lymphoid architectures in ovarian teratomas with dense B cell foci expressing the germinal centre marker BCL6, CD21+ follicular dendritic cells, and the NR1 subunit, alongside lymphatic vessels and high endothelial vasculature. Cultured teratoma explants and dissociated intratumoral B cells secreted NR1-IgGs in culture. Hence, ovarian teratomas showed structural and functional evidence of NR1-specific germinal centres. On exploring classical secondary lymphoid organs, B cells cultured from cervical lymph nodes of patients with NMDAR-antibody encephalitis produced NR1-IgG in 3/7 cultures, from patients with the highest serum NR1-IgG levels (P < 0.05). By contrast, NR1-IgG secretion was observed neither from cervical lymph nodes in disease controls nor in patients with adequately resected ovarian teratomas. Our multimodal evaluations provide convergent anatomical and functional evidence of NMDAR-autoantibody production from active germinal centres within both intratumoral tertiary lymphoid structures and traditional secondary lymphoid organs, the cervical lymph nodes. Furthermore, we develop a cervical lymph node sampling protocol that can be used to directly explore immune activity in health and disease at this emerging neuroimmune interface.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Vasos Linfáticos , Teratoma , Autoanticorpos , Feminino , Centro Germinativo , Humanos , Imunoglobulina A , Imunoglobulina G , Neoplasias Ovarianas , Receptores de N-Metil-D-AspartatoRESUMO
Congenital dyserythropoietic anemia type 1 (CDA-1), a rare inborn anemia characterized by abnormal chromatin ultrastructure in erythroblasts, is caused by abnormalities in codanin-1, a highly conserved protein of unknown function. We have produced 3 monoclonal antibodies to codanin-1 that demonstrate its distribution in both nucleus and cytoplasm by immunofluorescence and allow quantitative measurements of patient and normal material by Western blot. A detailed analysis of chromatin structure in CDA-1 erythroblasts shows no abnormalities in overall histone composition, and the genome-wide epigenetic landscape of several histone modifications is maintained. However, immunofluorescence analysis of intermediate erythroblasts from patients with CDA-1 reveals abnormal accumulation of HP1α in the Golgi apparatus. A link between mutant codanin-1 and the aberrant localization of HP1α is supported by the finding that codanin-1 can be coimmunoprecipitated by anti-HP1α antibodies. Furthermore, we show colocalization of codanin-1 with Sec23B, the protein defective in CDA-2 suggesting that the CDAs might be linked at the molecular level. Mice containing a gene-trapped Cdan1 locus demonstrate its widespread expression during development. Cdan1(gt/gt) homozygotes die in utero before the onset of primitive erythropoiesis, suggesting that Cdan1 has other critical roles during embryogenesis.
Assuntos
Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/patologia , Proteínas Cromossômicas não Histona/análise , Eritroblastos/patologia , Glicoproteínas/genética , Mutação , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/patologia , Homólogo 5 da Proteína Cromobox , Eritroblastos/metabolismo , Feminino , Glicoproteínas/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Proteínas de Transporte Vesicular/análiseRESUMO
T-cell receptor mimic (TCRm) antibodies have expanded the repertoire of antigens targetable by monoclonal antibodies, to include peptides derived from intracellular proteins that are presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface. We have previously used this approach to target p53, which represents a valuable target for cancer immunotherapy because of the high frequency of its deregulation by mutation or other mechanisms. The T1-116C TCRm antibody targets the wild type p5365-73 peptide (RMPEAAPPV) presented by HLA-A*0201 (HLA-A2) and exhibited in vivo efficacy against triple receptor negative breast cancer xenografts. Here we report a comprehensive mutational analysis of the p53 RMPEAAPPV peptide to assess the T1-116C epitope and its peptide specificity. Antibody binding absolutely required the N-terminal arginine residue, while amino acids in the center of the peptide contributed little to specificity. Data mining the immune epitope database with the T1-116C binding consensus and validation of peptide recognition using the T2 stabilization assay identified additional tumor antigens targeted by T1-116C, including WT1, gp100, Tyrosinase and NY-ESO-1. Most peptides recognized by T1-116C were conserved in mice and human HLA-A2 transgenic mice showed no toxicity when treated with T1-116C in vivo. We conclude that comprehensive validation of TCRm antibody target specificity is critical for assessing their safety profile.
Assuntos
Antígeno HLA-A2/genética , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Linhagem Celular Tumoral , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-A2/metabolismo , Humanos , Rim/patologia , Fígado/patologia , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/química , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The role of Notch signaling and its ligand JAGGED1 (JAG1) in tumor biology has been firmly established, making them appealing therapeutic targets for cancer treatment. Here, we report the development and characterization of human/rat-specific JAG1-neutralizing mAbs. Epitope mapping identified their binding to the Notch receptor interaction site within the JAG1 Delta/Serrate/Lag2 domain, where E228D substitution prevented effective binding to the murine Jag1 ortholog. These antibodies were able to specifically inhibit JAG1-Notch binding in vitro, downregulate Notch signaling in cancer cells, and block the heterotypic JAG1-mediated Notch signaling between endothelial and vascular smooth muscle cells. Functionally, in vitro treatment impaired three-dimensional growth of breast cancer cell spheroids, in association with a reduction in cancer stem cell number. In vivo testing showed variable effects on human xenograft growth when only tumor-expressed JAG1 was targeted (mouse models) but a more robust effect when stromal-expressed Jag1 was also targeted (rat MDA-MB-231 xenograft model). Importantly, treatment of established triple receptor-negative breast cancer brain metastasis in rats showed a significant reduction in neoplastic growth. MRI imaging demonstrated that this was associated with a substantial improvement in blood-brain barrier function and tumor perfusion. Lastly, JAG1-targeting antibody treatment did not cause any detectable toxicity, further supporting its clinical potential for cancer therapy.
Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Proteína Jagged-1/química , Proteína Jagged-1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenvolvimento de Medicamentos , Feminino , Humanos , Camundongos , Ratos , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and ß2 microglobulin (ß2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and ß2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy.
Assuntos
Antígenos de Histocompatibilidade Classe I/química , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/química , Animais , Epitopos , Humanos , Imunoterapia/métodos , Camundongos , Modelos Imunológicos , Proteínas Recombinantes de Fusão/imunologiaRESUMO
The tumor suppressor p53 is widely dysregulated in cancer and represents an attractive target for immunotherapy. Because of its intracellular localization, p53 is inaccessible to classical therapeutic monoclonal antibodies, an increasingly successful class of anticancer drugs. However, peptides derived from intracellular antigens are presented on the cell surface in the context of MHC I and can be bound by T-cell receptors (TCR). Here, we report the development of a novel antibody, T1-116C, that acts as a TCR mimic to recognize an HLA-A*0201-presented wild-type p53 T-cell epitope, p5365-73(RMPEAAPPV). The antibody recognizes a wide range of cancers, does not bind normal peripheral blood mononuclear cells, and can activate immune effector functions to kill cancer cells in vitroIn vivo, the antibody targets p5365-73 peptide-expressing breast cancer xenografts, significantly inhibiting tumor growth. This represents a promising new agent for future cancer immunotherapy. Cancer Res; 77(10); 2699-711. ©2017 AACR.
Assuntos
Anticorpos Monoclonais/farmacologia , Mimetismo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Imunofenotipagem , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Ligação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The prevalence, diversity and linkage of pTA-related plasmid rep and mob genes in 18 plasmids from three closely related species of Bacillus from diverse geographical locations have been investigated using PCR. pTA-related rep and mob sequences were both amplified from 13 of the 18 plasmids. For one plasmid, pBM9, only a pTA-related mob gene was amplified, whilst only a pTA-related rep gene was amplified from the Bacillus licheniformis plasmid pBL2. No products were amplified for either gene from two other B. licheniformis plasmids or from a larger 16-kb Bacillus subtilis plasmid, pBS6. Whilst simple gene detection suggests close linkage of both pTA-related rep and mob genes, on most of these plasmids, sequence analysis of amplified genes revealed more complex linkage relationships varying with geographical origin, plasmid size and bacterial host.