Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750264

RESUMO

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Assuntos
Cádmio , Inflamação , Estresse Oxidativo , Piroptose , Fumarato de Quetiapina , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Cádmio/toxicidade , Fumarato de Quetiapina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
2.
Drug Chem Toxicol ; : 1-12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508707

RESUMO

Methotrexate (MTX) is an anti-folate chemotherapeutic commonly used to treat cancer and autoimmune diseases. Despite its widespread clinical use, MTX has been linked to serious neurotoxicity side effects. Vinpocetine (VNP) has been widely used clinically to treat many neurological conditions. This study was conducted to study the potential neuroprotective effects of VNP against MTX hippocampal intoxication in rats. Thirty-two rats were randomly allocated into 4 groups: (I) control (Vehicle); (II) VNP-treated group (20 mg/kg/day, p.o); (III) MTX-control (20 mg/kg/once, i.p.) group; and (IV) the VNP + MTX group. VNP was administered orally for 10 days, during which MTX was given intraperitoneally once at the end of day 5. Our data indicated that VNP administration significantly improved MTX-induced neuronal cell death, odema, vacuolation and degeneration. VNP attenuated oxidative injury mediated by significant upregulation of the Nrf2, HO-1, and GCLC genes, while the Keap-1 mRNA expression downregulated. Moreover, VNP suppressed cytokines release mediated by increasing IκB expression level while it caused a marked downregulation in NF-κB and AP-1 (C-FOS and C-JUN) levels. Additionally, VNP attenuated apoptosis by reducing hippocampal Bax levels while increasing Bcl2 levels in MTX-intoxicated rats. In conclusion, our results suggested that VNP significantly attenuated MTX hippocampal intoxication by regulating Keap-1/Nrf2, NF-κB/AP-1, and apoptosis signaling in these effects.

3.
Immunopharmacol Immunotoxicol ; 46(1): 11-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493389

RESUMO

OBJECTIVES: Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS: VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS: VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1ß levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION: Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.


Assuntos
Metotrexato , NF-kappa B , Alcaloides de Vinca , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Estresse Oxidativo , Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Janus Quinase 1/metabolismo , Proteínas Quinases/metabolismo
4.
Drug Dev Res ; 85(2): e22166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424708

RESUMO

Hyperlipidemia is a common clinically encountered health condition worldwide that promotes the development and progression of cardiovascular diseases, including atherosclerosis. Berberine (BBR) is a natural product with acknowledged anti-inflammatory, antioxidant, and metabolic effects. This study evaluated the effect of BBR on lipid alterations, oxidative stress, and inflammatory response in rats with acute hyperlipidemia induced by poloxamer-407 (P-407). Rats were pretreated with BBR (25 and 50 mg/kg) for 14 days and acute hyperlipidemia was induced by a single dose of P-407 (500 mg/kg). BBR ameliorated hypercholesterolemia, hypertriglyceridemia, and plasma lipoproteins in P-407-adminsitered rats. Plasma lipoprotein lipase (LPL) activity was decreased, and hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was enhanced in hyperlipidemic rats. The expression of low-density lipoprotein receptor (LDL-R) and ATP-binding cassette transporter 1 (ABCA1) was downregulated in hyperlipidemic rats. BBR enhanced LPL activity, upregulated LDL-R, and ABCA1, and suppressed HMG-CoA reductase in P-407-administered rats. Pretreatment with BBR ameliorated lipid peroxidation, nitric oxide (NO), pro-inflammatory mediators (interleukin [IL]-6, IL-1ß, tumor necrosis factor [TNF]-α, interferon-γ, IL-4 and IL-18) and enhanced antioxidants. In addition, BBR suppressed lymphocyte ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) as well as NO and TNF-α release by macrophages isolated from normal and hyperlipidemic rats. In silico investigations revealed the binding affinity of BBR toward LPL, HMG-CoA reductase, LDL-R, PSK9, ABCA1, and E-NTPDase. In conclusion, BBR effectively prevented acute hyperlipidemia and its associated inflammatory responses by modulating LPL, cholesterolgenesis, cytokine release, and lymphocyte E-NTPDase and E-ADA. Therefore, BBR is an effective and safe natural compound that might be employed as an adjuvant against hyperlipidemia and its associated inflammation.


Assuntos
Berberina , Hiperlipidemias , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse Oxidativo , Interleucina-6/metabolismo , Antioxidantes/uso terapêutico , Linfócitos/metabolismo , Linfócitos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico
5.
Mol Cell Biochem ; 478(10): 2319-2335, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36717473

RESUMO

Cyclophosphamide (CPA) is a classical chemotherapeutic drug widely used as an anticancer and immunosuppressive agent. However, it is frequently associated with significant toxicities to the normal cells of different organs, including the lung and heart. Lansoprazole (LPZ), a proton pump inhibitor (PPI), possesses antioxidant and anti-inflammatory properties. The current study investigated how LPZ protects against CPA-induced cardiac and pulmonary damage, focusing on PPARγ, Nrf2, HO-1, cytoglobin, PI3K/AKT, and NF-κB signaling. Animals were randomly assigned into four groups: normal control group (received vehicle), LPZ only group (Rats received LPZ at a dose of 50 mg/kg/day P.O. for 10 days), CPA group (CPA was administered (200 mg/kg) as a single i.p. injection on the 7th day), and cotreatment group (LPZ plus CPA). Histopathological and biochemical analyses were conducted. Our results revealed that LPZ treatment revoked CPA-induced heart and lung histopathological alterations. Also, LPZ potently mitigated CPA-induced cardiac and pulmonary oxidative stress through the activation of PPARγ, Nrf2/HO-1, cytoglobin, and PI3K/AKT signaling pathways. Also, LPZ effectively suppressed inflammatory response as evidenced by down-regulating the inflammatory strategic controller NF-κB, MPO, and pro-inflammatory cytokines. The present findings could provide a mechanistic basis for understanding LPZ's role in CPA-induced cardiopulmonary injury through the alleviation of oxidative stress and inflammatory burden.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Ratos , Animais , Lansoprazol/farmacologia , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , PPAR gama/metabolismo , Citoglobina/metabolismo , Citoglobina/farmacologia , Ciclofosfamida/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Oxirredução
6.
Mol Biol Rep ; 50(12): 10471-10484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910384

RESUMO

Necroptosis, a type of programmed cell death that resembles necrosis, is now known to depend on a different molecular mechanism from apoptosis, according to several recent studies. Many efforts have reported the possible influence of necroptosis in human disorders and concluded the crucial role in the pathophysiology of various diseases, including liver diseases, renal injuries, cancers, and others. Fibrosis is the most common end-stage pathological cascade of several chronic inflammatory disorders. In this review, we explain the impact of necroptosis and fibrosis, for which necroptosis has been demonstrated to be a contributing factor. We also go over the inhibitors of necroptosis and how they have been applied to fibrosis models. This review helps to clarify the role of necroptosis in fibrosis and will encourage clinical efforts to target this pathway of programmed cell death.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose , Fibrose
7.
J Biochem Mol Toxicol ; 37(4): e23309, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645100

RESUMO

Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.


Assuntos
Traumatismos Cardíacos , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Cisplatino/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Citocromos c/metabolismo , Proteína X Associada a bcl-2/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Estresse Oxidativo , Traumatismos Cardíacos/induzido quimicamente , Apoptose
8.
J Biochem Mol Toxicol ; 37(9): e23414, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341015

RESUMO

Methotrexate (MTX) is a chemotherapeutic agent widely used to treat a variety of tumors. Nonetheless, MTX-induced hippocampal neurotoxicity is a well-defined dose-limiting adverse effect that limits clinical utility. Proinflammatory cytokine production and oxidative stress are possible mechanisms for MTX-induced neurotoxicity. Buspirone (BSP), a partial agonist of the 5-HT1a receptor (5-HT1aR), has emerged as an anxiolytic drug. BSP has been shown to possess antioxidant and anti-inflammatory effects. The current study investigated BSP's potential anti-inflammatory and antioxidant effects in attenuating MTX-induced hippocampal toxicity. Rats received either BSP (1.5 mg/kg) orally for 10 days and MTX (20 mg/kg) i.p. on Day 5. BSP administration markedly protected hippocampal neurons from drastic degenerated neuronal changes induced by MTX. BSP significantly attenuated oxidative injury by downregulating Kelch-like ECH-associated protein 1 expression while potently elevating hippocampal Nrf2, heme oxygenase-1, and peroxisome proliferator-activated receptor expression. BSP dampened inflammation by reducing NO2 - , tumor necrosis factor-alpha, IL-6, and interleukin 1 beta levels mediated by downregulating NF-κB and neuronal nitric oxides synthase expression. Moreover, BSP potently counteracted hippocampal pyroptosis by downregulating NLRP3, ASC, and cleaved-caspase-1 proteins. Therefore, BSP may represent a promising approach to attenuate neurotoxicity in patients receiving MTX.


Assuntos
Metotrexato , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Buspirona/farmacologia , Caspase 1/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Antioxidantes/farmacologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia
9.
Ecotoxicol Environ Saf ; 262: 115122, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329850

RESUMO

Chlorpyrifos (CPF), is an organophosphate pesticide that is widely used for agricultural purposes. However, it has well-documented hepatotoxicity. Lycopene (LCP) is a plant-derived carotenoid with antioxidant and anti-inflammatory activities. The present work was designed to evaluate the potential hepatoprotective actions of LCP against CPF-induced hepatotoxicity in rats. Animals were assigned into five groups namely: Group I (Control), Group II (LCP), Group III (CPF), Group IV (CPF + LCP 5 mg/kg), and Group V (CPF + LCP 10 mg/kg). LCP offered protection as evidenced by inhibiting the rise in serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) induced by CPF. This was confirmed histologically as LCP-treated animals showed liver tissues with less proliferation of bile ducts and periductal fibrosis. LCP significantly prevented the rise in hepatic content of malondialdehyde (MDA), depletion of reduced glutathione (GSH), and exhaustion of glutathione-s-transferase (GST) and superoxide dismutase (SOD). Further, LCP significantly prevented hepatocyte death as it ameliorated the increase in Bax and the decrease in Bcl-2 expression induced by CPF in liver tissues as determined immunohistochemically. The observed protective effects of LCP were further confirmed by a significant enhancement in heme oxygenase-1 (HO-1) and NF-E2-related factor 2 (Nrf2) expression. In conclusion, LCP possesses protective effects against CPF-induced hepatotoxicity. These include antioxidation and activation of the Nrf2/HO-1 axis.

10.
Phytother Res ; 37(7): 3161-3181, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246827

RESUMO

When used as an alternative source of drugs to treat inflammation-associated diseases, phytochemicals with anti-inflammatory properties provide beneficial impacts. Galangin is one of the most naturally occurring flavonoids. Galangin has many biological activities, such as anti-inflammatory, antioxidant, antiproliferative, antimicrobial, anti-obesity, antidiabetic, and anti-genotoxic activities. We observed that galangin was well tolerated and positively impacted disease underlying inflammation for the renal, hepatic, central nervous system, cardiovascular, gastrointestinal system, skin, and respiratory disorders, as well as ulcerative colitis, acute pancreatitis, retinopathy, osteoarthritis, osteoporosis, and rheumatoid arthritis. Galangin anti-inflammatory effects are mediated mainly by suppressing p38 mitogen-activated protein kinases, nuclear factor-kappa B, and nod-like receptor protein 3 signals. These effects are confirmed and supported by molecular docking. Clinical translational research is required to accelerate the bench-to-bedside transfer and determine whether galangin can be utilised as a safe, natural source of pharmaceutical anti-inflammatory medication for humans.


Assuntos
Pancreatite , Humanos , Doença Aguda , Simulação de Acoplamento Molecular , Pancreatite/induzido quimicamente , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/efeitos adversos
11.
Immunopharmacol Immunotoxicol ; 45(3): 304-316, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36326099

RESUMO

OBJECTIVES: Canagliflozin (CAN), a sodium-glucose co-transporter 2 inhibitor, is an anti-hyperglycemic drug that has been approved to treat diabetes. This study evaluated the beneficial effects of CAN on cerebral cortex intoxication induced by cisplatin (CIS). MATERIALS AND METHODS: Rats were allocated into four groups: normal control, CAN (10 mg/kg, P.O.) for 10 days, CIS (8 mg/kg, i.p.) as a single dose on the 5th day of the experiment, and CAN + CIS group. RESULTS: In comparison with CIS control rats, CAN significantly mitigated CIS-induced cortical changes in rats' behavior in the open field and forced swimming assessment as well as histological structure. Biochemically, CAN administration efficiently decreased lipid peroxidation biomarkers MDA and boosted the antioxidant status via a remarkable increase in the cortical reduced glutathione (GSH) content as well as enzymatic activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase (CAT), and glutathione peroxidase (GPx) mediated by up-regulation of heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptors (PPARγ), and silent information regulator (SIRT1)/forkhead box-O3 (FOXO-3) signals. Additionally, pretreatment with CAN significantly decreased cortical myeloperoxidase (MPO), nitrite (NO2-), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels. At the same time, it elevated the IL-10 level associated with the downregulation of Jun N-terminal kinase (JNK)/activator protein 1 (AP-1), TLR4/inducible nitric oxide synthase (iNOS)/nitric oxide (NO), and Ang II/Ang 1-7 signals. CONCLUSIONS: Due to the potent antioxidant and anti-inflammatory properties of CAN, our findings showed that CAN could be a good candidate for the protection against CIS-induced cortical intoxication in the patient receiving CIS.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Ratos , Antioxidantes/metabolismo , Lesões Encefálicas/tratamento farmacológico , Canagliflozina/farmacologia , Córtex Cerebral/metabolismo , Cisplatino/efeitos adversos , Heme Oxigenase-1 , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo
12.
Toxicol Mech Methods ; 33(4): 316-326, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36258671

RESUMO

Cardiac toxicity is a serious adverse effect of cisplatin (CIS). Lansoprazole (LPZ) is a proton pump inhibitor with promising cardioprotective effects. Our study planned to examine the cardioprotective effect of LPZ against CIS-induced cardiac injury. To achieve this goal, 32 male rats were randomly allocated into four groups. CIS, 7 mg/kg, was injected i.p. on the fifth day of the experiment. LPZ was administered via oral gavage at a dose of 50 mg/kg. The present study revealed that CIS injection induced a remarkable cardiac injury evidenced by an increase in serum ALP, AST, CK-MB, LDH, and troponin-I levels. The cardiac oxidative damage was also observed after CIS injection and mediated by downregulation of GSH, SOD, GST, Nrf2, HO-1, PPAR-γ, and cytoglobin levels associated with the upregulation of MDA content. Besides, CIS injection caused a significant inflammatory reaction mediated by alteration of cardiac NF-κB, STAT-3, p-STAT-3, and IκB expressions. Additionally, cardiac Ang-II expression was significantly increased in CIS control rats, while Ang 1-7 expression was significantly reduced relative to normal rats. In contrast, LPZ administration remarkably ameliorated these changes in the heart of CIS-intoxicated rats. Collectively, LPZ potently attenuated cardiac toxicity induced by CIS via regulation of Nrf2/HO-1, PPAR-γ, cytoglobin, IκB/NF-κB/STAT-3, and Ang-II/Ang 1-7 signals.


Assuntos
Traumatismos Cardíacos , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Citoglobina/metabolismo , Citoglobina/farmacologia , Ratos Sprague-Dawley , Cardiotoxicidade , Lansoprazol/farmacologia , Lansoprazol/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Traumatismos Cardíacos/induzido quimicamente
13.
Toxicol Mech Methods ; 33(8): 675-687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403423

RESUMO

Cadmium (Cd) is one of the most hazardous metals to the environment and human health. Neurotoxicity is of the most serious hazards caused by Cd. Mirtazapine (MZP) is a central presynaptic α2 receptor antagonist used effectively in treating several neurological disorders. This study investigated the anti-inflammatory and antioxidant activity of MZP against Cd-induced neurotoxicity. In this study, rats were randomly divided into five groups: control, MZP (30 mg/kg), Cd (6.5 mg/kg/day; i.p), Cd + MZP (15 mg/kg), and Cd + MZP (30 mg/kg). Histopathological examination, oxidative stress biomarkers, inflammatory cytokines, and the impact of Nrf2 and NF-κB/TLR4 signals were assessed in our study. Compared to Cd control rats, MZP attenuated histological abrasions in the cerebral cortex and CA1 and CA3 regions of the hippocampus as well as the dentate gyrus. MZP attenuated oxidative injury by upregulating Nrf2. In addition, MZP suppressed the inflammatory response by decreasing TNF-α, IL-1ß, and IL-6 mediated by downregulating TLR4 and NF-κB. It is noteworthy that MZP's neuroprotective actions were dose-dependent. Collectively, MZP is a promising therapeutic strategy for attenuating Cd-induced neurotoxicity by regulating Nrf2, and NF-κB/TLR4 signals, pending further study in clinical settings.


Assuntos
Cádmio , NF-kappa B , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Cádmio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Mirtazapina/uso terapêutico , Mirtazapina/farmacologia , Estresse Oxidativo
14.
Saudi Pharm J ; 31(10): 101766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731943

RESUMO

Cisplatin (CIS) is a chemotherapeutic medication for the treatment of cancer. However, hepatotoxicity is among the adverse effects limiting its use. Caroxylon salicornicum is traditionally used for treating inflammatory diseases. In this investigation, three flavonoids, four coumarins, and three sterols were detected in the petroleum ether fraction of C. salicornicum (PEFCS). The isolated phytochemicals exhibited binding affinity toward Keap1, NF-κB, and SIRT1 in silico. The hepatoprotective role of PEFCS (100, 200 and 400 mg/kg) was investigated in vivo. Rats received PEFCS for 14 days and CIS on day 15. CIS increased ALT, AST and ALP and caused tissue injury along with increased ROS, MDA, and NO. Hepatic NF-κB p65, pro-inflammatory mediators, Bax and caspase-3 were increased in CIS-treated animals while antioxidants and Bcl-2 were decreased. PEFCS mitigated hepatocyte injury, and ameliorated transaminases, ALP, oxidative stress (OS) and inflammatory markers. PEFCS downregulated pro-apoptosis markers and boosted Bcl-2 and antioxidants. In addition, PEFCS upregulated Nrf2, HO-1, and SIRT1 in CIS-administered rats. In conclusion, PEFCS is rich in beneficial phytoconstituents and conferred protection against liver injury by attenuating OS and inflammation and upregulating Nrf2 and SIRT1.

15.
Bioorg Chem ; 120: 105627, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065465

RESUMO

Four new series of 1,2,4 triazole derivatives 4a,b 5a-d, 6a-f, and 7a,b possessing methylsulphonylphenyl moiety as COX-2 pharmacophore were designed and synthesized. The target compounds were prepared and evaluated in-vitro against COX-1 and COX-2 enzymes. Compounds 4a, 5b, 6a, and 7a showed the highest selectivity towards the COX-2 enzyme (S.I. = 8.64-14.58) in comparison to celecoxib (S.I. = . 6.44). Interestingly, compounds 4a, 6a, and 7a showed good anti-inflammatory activity with edema inhibition (54.17, 53.03, and 50.29 %, in order) relative to the reference drug celecoxib (49.60%) after 3 h. Additionally, these potent derivatives 4a, 5b, 6a and 7a were significantly less ulcerogenic (U.I. = 2.27-2.97) than both reference drugs celecoxib (U.I. = 2.99) and indomethacin (U.I. = 20.25). Besides, a histopathological study of the stomach was also included. Moreover, docking simulation for the most selective compounds 4a, 5b, 6a, and 7a inside COX-2 active site was performed to explain their binding mode. Finally, an ADME study was applied and proved the promising activity of the new compounds as a new oral anti-inflammatory agent. In conclusion, the above findings reveal that newly developed compounds 4a, 6a, and 7a represent a potential selective COX-2 NSAID candidate with minimum gastrointestinal risks.


Assuntos
Anti-Inflamatórios , Inibidores de Ciclo-Oxigenase 2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Celecoxib/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Desenho de Fármacos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Úlcera/induzido quimicamente , Úlcera/tratamento farmacológico , Úlcera/patologia
16.
Phytother Res ; 36(1): 488-505, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939704

RESUMO

This study targeted to examine the protective effects of acetovanillone (AV) against methotrexate (MTX)-induced hepatotoxicity. Thirty-two rats were allocated into four groups of eight animals; Group 1: Normal; Group 2: administered AV (100 ml/kg; P.O.) for 10 days; Group 3: challenged with MTX (20 mg/kg, i.p; single dose); Group 4: administered AV 5 days before and 5 days after MTX. For the first time, this study affords evidence for AV's hepatoprotective effects on MTX-induced hepatotoxicity. The underlined mechanisms behind its hepatic protection include counteracting MTX-induced oxidative injury via down-regulation of NADPH oxidase and up-regulation of Nrf2/ARE, SIRT1, PPARγ, and cytoglobin signals. Additionally, AV attenuated hepatic inflammation through down-regulation of IL-6/STAT-3 and NF-κB/AP-1 signaling. Network pharmacology analysis exhibited a high enrichment score between the interacting proteins and strongly suggested the intricate and essential role of the target proteins regulating MTX-induced oxidative damage and inflammatory perturbation. Besides, AV increased the in vitro cytotoxic activity of MTX toward PC-3, HeLa, and K562 cancer cell lines. On the whole, our investigation suggested that AV might be regarded as a promising adjuvant for the amelioration of MTX hepatotoxicity and/or increased its in vitro antitumor efficacy, and it could be used in patients receiving MTX.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Acetofenonas , Animais , Interleucina-6 , Metotrexato/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Farmacologia em Rede , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Transcrição AP-1
17.
J Biochem Mol Toxicol ; 35(11): e22889, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390071

RESUMO

Hemorrhagic cystitis is a potentially deadly complication associated with radiation therapy and chemotherapy. This study explored the protective effect of edaravone (ED) on cyclophosphamide (CP)-induced hemorrhagic cystitis, oxidative stress, and inflammation in rats. The animals received 20 mg/kg ED for 10 days and a single injection of 200 mg/kg CP on day 7. CP induced tissue injury manifested by the diffuse necrotic changes, disorganization of lining mucosa, focal hemorrhagic patches, mucosal/submucosal inflammatory cells infiltrates, and edema. CP increased malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha, and interleukin 6 (IL-6), decreased IL-10, and upregulated toll-like receptor 4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 3 (STAT3) in the urinary bladder of rats. ED effectively prevented the histopathological alterations, decreased MDA, NO, and inflammatory mediators, and downregulated TLR-4, NF-κB, JAK1, and STAT3 in CP-induced rats. Treatment with ED upregulated ikß kinase ß, IL-10, nuclear factor-erythroid 2 related factor 2 (Nrf2), and cytoglobin, and boosted glutathione, superoxide dismutase, and glutathione S-transferase. Molecular docking simulations revealed the ability of ED to bind TLR-4, NF-κB, JAK1, and STAT3. In vitro, ED increased the cytotoxic activity of CP against HeLa, Caco-2, and K562 cell lines. In conclusion, ED prevented CP-induced hemorrhagic cystitis in rats by attenuating oxidative stress, suppressing TLR-4/NF-κB, and JAK1/STAT3 signaling and boosted Nrf2, cytoglobin, and antioxidants.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Ciclofosfamida/toxicidade , Cistite/prevenção & controle , Edaravone/toxicidade , Hemorragia/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Cistite/complicações , Hemorragia/complicações , Janus Quinase 1/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo
18.
J Biochem Mol Toxicol ; 35(5): e22738, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33522649

RESUMO

Cisplatin (Cis) is one of the most potent and effective broad-spectrum antitumor drugs, but its use is limited due to nephrotoxicity. The current study investigated the renoprotective effect of umbelliferone (UMB) on Cis-induced nephrotoxicity in rats. Renal injury was induced by a single injection of Cis (7 mg/kg, ip). Our results exhibited that the injection of Cis significantly disrupted renal function biomarkers as well as KIM-1 expression. The expressions of TNF-α, IL-1ß, NF-kB-p65, and IKKß were elevated along with downregulation of IkBα expression. Also, Cis disrupted cellular oxidant/antioxidant balance through the reduction of glutathione (GSH), glutathione-S-transferase (GST), and superoxide dismutase (SOD) levels and elevation of malondialdehyde (MDA) content. On the contrary, the levels of renal function biomarkers, cytokines, NF-kB-p65, IkBα, IKKß, and oxidant/antioxidant status have been improved after UMB treatment. Mechanistically, rats administered Cis only exhibited a significant decrease in NRF2 and cytoglobin expressions as well as the CREB, SIRT1, FOXO-3, and PPAR-γ genes. Treatment with UMB significantly upregulated NRF2 and cytoglobin proteins, as well as effectively increased the expression of CREB, SIRT1, FOXO-3, PPAR-γ, and NRF2 genes. Histopathological findings strongly supported our biochemical results, as evidenced by attenuation of renal hemorrhage, cast diffusion, and inflammatory cell infiltration. Interestingly, UMB significantly enhanced Cis cytotoxicity in both HL-60 and HeLa cells in a dose-dependent manner. Together, our results demonstrated that UMB can protect against Cis-induced nephrotoxicity in normal rats along with the enhancement of its in vitro antitumor activity. These findings suggested that UMB could be used as a potential adjuvant therapy in Cis chemotherapeutic protocols.


Assuntos
Cisplatino/efeitos adversos , Citoglobina/metabolismo , Proteína Forkhead Box O3/metabolismo , Nefropatias , Rim , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Fator de Transcrição RelA/metabolismo , Umbeliferonas/farmacologia , Animais , Cisplatino/farmacologia , Rim/lesões , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Masculino , Ratos , Ratos Wistar
19.
Bioorg Chem ; 114: 105122, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243075

RESUMO

The cardiovascular side effects associated with COX-2 selective drugs were the worst for coxibs leading to their withdrawal from the market a few years after their discovery. Therefore, the design of new series of pyrazole (4a,b 5a,b, 7a,b, 9a,b, 10a-h, and 11a-f) substituted with a triazole moiety as selective COX-2 inhibitors with cardioprotective effect was aimed in this paper. The target compounds were prepared and evaluated in-vitro against COX-1 and COX-2 enzymes. Compound 5-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)-4H-1,2,4-triazole-3-thiol (7a) showed the highest selectivity towards COX-2 enzyme (S.I. = 27.56) and was the most active anti-inflammatory agent. Interestingly, its cardiovascular profile showed the cardiac biomarkers (ALP, AST, CK-MB, and LDH), as well as inflammatory cytokines named (TNF-α and IL-6) nearly similar to the control. Besides, a histopathological study of the heart muscle and the stomach was also included. The results confirmed that compound 7a has a more favorable cardio profile than celecoxib. Moreover, docking simulation for the most selective compounds 4b, 7a, 10e, 11c, and 11e inside COX-2 active site was performed to explain their binding mode. Finally, an ADME study was applied and proved the promising activity of the new compounds as a new oral anti-inflammatory agent. In conclusion, the newly developed compound 7a represents a potential selective COX-2 NSAID candidate with minimum cardiovascular risks.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cardiotônicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Pirazóis/farmacologia , Triazóis/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Cardiotônicos/síntese química , Cardiotônicos/química , Carragenina , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Ratos , Ratos Wistar , Úlcera Gástrica/tratamento farmacológico , Relação Estrutura-Atividade , Triazóis/química
20.
Phytother Res ; 35(8): 4499-4510, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33969557

RESUMO

Cyclophosphamide (CP) is a medication used as an anticancer drug and to suppress the immune system. However, its clinical applications are restricted because of the toxic and adverse side effects. The present study investigated the protective effect of acetovanillone (AV), a natural NADPH oxidase inhibitor, against acute lung injury (ALI) induced by CP. Rats were administered AV (100 mg/kg) for 10 days and a single injection of CP (200 mg/kg) at day 7. At the end of the experiment, the animals were sacrificed, and lung samples were collected for analyses. CP caused ALI manifested by the histopathological alterations. Lipid peroxidation and NADPH oxidase activity were increased, whereas GSH and antioxidant enzymes were decreased in the lung of CP-intoxicated rats. Oral administration of AV prevented CP-induced lung injury and oxidative stress and enhanced antioxidant defenses. AV downregulated Keap1 and upregulated Nrf2, GCLC, HO-1, and SOD3 mRNA. In addition, AV boosted the expression of PI3K, Akt, mTOR, and cytoglobin. In vitro, AV showed a synergistic anticancer effect when combined with CP. In conclusion, AV protected against CP-induced ALI by attenuating oxidative stress and boosting Nrf2/HO-1 and PI3K/Akt/mTOR signaling. Therefore, AV might represent a promising adjuvant to prevent lung injury in patients receiving CP.


Assuntos
Acetofenonas/farmacologia , Lesão Pulmonar Aguda , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Animais , Ciclofosfamida/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa