Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 18(5): 818-836, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30705123

RESUMO

Kallikrein-related peptidase 7 (KLK7) is a serine peptidase that is over expressed in ovarian cancer. In vitro functional analyses have suggested KLK7 to play a cancer progressive role, although monitoring of KLK7 expression has suggested a contradictory protective role for KLK7 in ovarian cancer patients. In order to help delineate its mechanism of action and thereby the functional roles, information on its substrate repertoire is crucial. Therefore, in this study a quantitative proteomics approach-PROtein TOpography and Migration Analysis Platform (PROTOMAP)-coupled with SILAC was used for in-depth analysis of putative KLK7 substrates from a representative ovarian cancer cell line, SKOV-3, secreted proteins. The Terminal Amine Isotopic Labeling of Substrates (TAILS) approach was used to determine the exact cleavage sites and to validate qPROTOMAP-identified putative substrates. By employing these two technically divergent approaches, exact cleavage sites on 16 novel putative substrates and two established substrates, matrix metalloprotease (MMP) 2 and insulin growth factor binding protein 3 (IGFBP3), were identified in the SKOV-3 secretome. Eight of these substrates were also identified on TAILS analysis of another ovarian cancer cell (OVMZ-6) secretome, with a further seven OVMZ-6 substrates common to the SKOV-3 qPROTOMAP profile. Identified substrates were significantly associated with the common processes of cell adhesion, extracellular matrix remodeling and cell migration according to the gene ontology (GO) biological process analysis. Biochemical validation supports a role for KLK7 in directly activating pro-MMP10, hydrolysis of IGFBP6 and cleavage of thrombospondin 1 with generation of a potentially bioactive N-terminal fragment. Overall, this study constitutes the most comprehensive analysis of the putative KLK7 degradome in any cancer to date, thereby opening new avenues for KLK7 research.


Assuntos
Calicreínas/metabolismo , Neoplasias Ovarianas/metabolismo , Proteólise , Proteoma/metabolismo , Proteômica , Sequência de Aminoácidos , Linhagem Celular Tumoral , Quimotripsina/metabolismo , Meios de Cultivo Condicionados/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Ontologia Genética , Humanos , Hidrólise , Metaloproteinase 10 da Matriz/metabolismo , Neoplasias Ovarianas/patologia , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Trombospondina 1/química , Trombospondina 1/metabolismo
2.
Sci Rep ; 7(1): 6789, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754951

RESUMO

The cleavage preferences of Kallikrein-related peptidase 7 (KLK7) have previously been delineated using synthetic peptide libraries of fixed length, or single protein chains and have suggested that KLK7 exerts a chymotryptic-like cleavage preference. Due to the short length of the peptides utilised, only a limited number of subsites have however been assessed. To determine the subsite preferences of KLK7 in a global setting, we used a mass spectrometry (MS)-based in-depth proteomics approach that utilises human proteome-derived peptide libraries of varying length, termed Proteomic Identification of protease Cleavage Sites (PICS). Consistent with previous findings, KLK7 was found to exert chymotryptic-like cleavage preferences. KLK7 subsite preferences were also characterised in the P2-P2' region, demonstrating a preference for hydrophobic residues in the non-prime and hydrophilic residues in the prime subsites. Interestingly, single catalytic triad mutant KLK7 (mKLK7; S195A) also showed residual catalytic activity (kcat/KM = 7.93 × 102 s-1M-1). Catalytic inactivity of KLK7 was however achieved by additional mutation in this region (D102N). In addition to characterising the cleavage preferences of KLK7, our data thereby also suggests that the use of double catalytic triad mutants should be employed as more appropriate negative controls in future investigations of KLK7, especially when highly sensitive MS-based approaches are employed.


Assuntos
Substituição de Aminoácidos , Calicreínas/metabolismo , Proteoma/química , Domínio Catalítico , Células HEK293 , Humanos , Calicreínas/química , Calicreínas/genética , Espectrometria de Massas/métodos , Pichia , Proteólise , Proteoma/metabolismo , Especificidade por Substrato
3.
Stem Cells Dev ; 24(16): 1888-900, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25794352

RESUMO

The molecular mechanisms that orchestrate the exit from pluripotency, cell cycle progression, and lineage-specific differentiation in human pluripotent stem cells (hPSCs) are poorly understood. RELB, a key protein in the noncanonical nuclear factor-kappaB (NFκB) signaling pathway, was previously implicated in controlling the switch between human embryonic stem cell (hESC) proliferation and differentiation. Here, we show that RELB enhances the proliferation of hESCs and human-induced pluripotent stem cells (hiPSCs) without affecting their pluripotency. We demonstrate that RELB does this by interacting with two RNA-binding proteins LIN28A and IMP3 (IGF2 mRNA-binding protein 3); further, these interactions control mRNA levels and protein expression of insulin-like growth factor 2 (IGF2) and key cell-cycle genes. Finally, after stress, these proteins co-localize in stress granules in hESCs and iPSCs. Our data identify RELB as a novel regulator of hPSC proliferation, and suggest a new function for RELB, in addition to its widely accepted role as a transcription factor, that involves recruitment of IMP3 and LIN28 to the cytosolic mRNA translation-control domains for post-transcriptional modulation of IGF2 and cell-cycle gene expression.


Assuntos
Proliferação de Células , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição RelB/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/genética , Fator de Transcrição RelB/genética
4.
Proteomics Clin Appl ; 8(5-6): 403-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24535680

RESUMO

Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. MS-driven proteomics uniquely allows for the detection, identification, and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review, we describe applications of this technology in KLK biomarker discovery and elucidate MS-based techniques that have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis, and therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Calicreínas/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias da Próstata/enzimologia , Proteômica/métodos , Feminino , Humanos , Calicreínas/biossíntese , Masculino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa