Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 33(13): 2020-2028, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334115

RESUMO

MOTIVATION: Quantitative large-scale cell microscopy is widely used in biological and medical research. Such experiments produce huge amounts of image data and thus require automated analysis. However, automated detection of cell outlines (cell segmentation) is typically challenging due to, e.g. high cell densities, cell-to-cell variability and low signal-to-noise ratios. RESULTS: Here, we evaluate accuracy and speed of various state-of-the-art approaches for cell segmentation in light microscopy images using challenging real and synthetic image data. The results vary between datasets and show that the tested tools are either not robust enough or computationally expensive, thus limiting their application to large-scale experiments. We therefore developed fastER, a trainable tool that is orders of magnitude faster while producing state-of-the-art segmentation quality. It supports various cell types and image acquisition modalities, but is easy-to-use even for non-experts: it has no parameters and can be adapted to specific image sets by interactively labelling cells for training. As a proof of concept, we segment and count cells in over 200 000 brightfield images (1388 × 1040 pixels each) from a six day time-lapse microscopy experiment; identification of over 46 000 000 single cells requires only about two and a half hours on a desktop computer. AVAILABILITY AND IMPLEMENTATION: C ++ code, binaries and data at https://www.bsse.ethz.ch/csd/software/faster.html . CONTACT: oliver.hilsenbeck@bsse.ethz.ch or timm.schroeder@bsse.ethz.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Algoritmos , Células HeLa , Humanos
2.
Stem Cell Reports ; 11(1): 58-69, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29779897

RESUMO

Embryonic stem cells (ESCs) display heterogeneous expression of pluripotency factors such as Nanog when cultured with serum and leukemia inhibitory factor (LIF). In contrast, dual inhibition of the signaling kinases GSK3 and MEK (2i) converts ESC cultures into a state with more uniform and high Nanog expression. However, it is so far unclear whether 2i acts through an inductive or selective mechanism. Here, we use continuous time-lapse imaging to quantify the dynamics of death, proliferation, and Nanog expression in mouse ESCs after 2i addition. We show that 2i has a dual effect: it both leads to increased cell death of Nanog low ESCs (selective effect) and induces and maintains high Nanog levels (inductive effect) in single ESCs. Genetic manipulation further showed that presence of NANOG protein is important for cell viability in 2i medium. This demonstrates complex Nanog-dependent effects of 2i treatment on ESC cultures.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , MAP Quinase Quinase 2/metabolismo , Proteína Homeobox Nanog/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Expressão Gênica , Técnicas de Inativação de Genes , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Camundongos , Proteína Homeobox Nanog/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única
3.
Cell Syst ; 3(5): 480-490.e13, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27883891

RESUMO

Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data. STILT is available for download as an open source framework from http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html.


Assuntos
Linhagem da Célula , Animais , Teorema de Bayes , Diferenciação Celular , Proteínas de Homeodomínio , Homeostase , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas , Proteína Homeobox Nanog
4.
Nat Cell Biol ; 17(10): 1235-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26389663

RESUMO

Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular/genética , Rastreamento de Células/métodos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Fatores de Transcrição/metabolismo , Transdução Genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa