Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Res ; 216(Pt 3): 114634, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341788

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are becoming more and more renowned as biocompatible nanomaterials with diverse biological functions. In the present study, the aqueous extract of tea residue (tea filtered waste powder) was used to synthesize the TiO2 NPs and treated for effluent bioremediations. Maximum absorption in the UV-Vis spectrum of the TiO2 NPs was seen at 358 nm, and the XRD pattern reveals peaks at 2 h values of 25.78, 38.24, 47.98, 54.76, 55.32, 62.64, 69.05, 70.15, 75.24, and 83.59 that may be indexed to the (101), (004), (200), (105), (211), (204), (116), (220), (215) and (303). The FT-IR spectra of TiO2 NPs showed a peak at 3420, 2925, 1621, 1382, 1098, and 687 cm-1. The spherical form and size were disclosed by FE-SEM analyses, and the EDAX pattern verified the purity of the TiO2 NPs. The average particles size of the TiO2 NPs was 32 nm. The photodegradation of paper mill waste water is significantly deteriorated up to 99.08% for 600 min, but textile waste water is degraded up to 98.06% for the same duration. Furthermore, we reported that TiO2 NPs may rapidly breakdown industrially hazardous effluents when exposed to sunshine. Overall, this new, straightforward, and environmentally beneficial strategy may be of interest to the management of efficient degradation of dye solutions in the polluted regions.


Assuntos
Extratos Vegetais , Águas Residuárias , Porosidade , Biodegradação Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química , Chá
2.
Environ Res ; 216(Pt 3): 114705, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328227

RESUMO

In this study, the sol-gel technique was used to develop Cobalt Sulfur codoped Titanium Dioxide (Co-S codoped TiO2) photocatalysts. For structural analysis of the prepared resultant TiO2 samples, XRD, FTIR, UV-Vis DRS, SEM, HR-TEM and EDX measurements were used to describe the produced photocatalysts. The characterization findings indicate that the synthesized nanoparticles possessed great crystallinity, high purity, and superior optical characteristics. For the methylene blue (MB) degradation process, Co-S codoped TiO2 nanoparticles were tested for their photocatalytic degradation performance. The Co-S codoped TiO2 nanoparticles had improved catalytic activity when compared with pure, Co-doped, S-doped TiO2 and decomposed 93% of MB in 120 min. When compared to pure and doped TiO2, the catalysts of Co-S codoped TiO2 showed a synergistic effect and improved the performance of the catalysts. Furthermore, the antibacterial applications of synthesized Co-S codoped TiO2 nanoparticles was studied against E. coli (Gram negative) and S. aureus (Gram positive) bacteria and exhibited strong antibacterial activity against the selected strains.


Assuntos
Cobalto , Escherichia coli , Staphylococcus aureus , Titânio/química , Luz , Catálise , Enxofre/química , Enxofre/farmacologia , Azul de Metileno , Antibacterianos/farmacologia
3.
Environ Res ; 216(Pt 3): 114749, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356667

RESUMO

Development of hybrid graphitic carbon nitride (GCN) nanocomposite is an emerging research area in wastewater treatment. Herein, hybrid visible light active photocatalyst of silver decorated polymeric graphitic carbon nitride and (Ag-GCN) with cerium oxide (CeO2) nanocomposite was prepared and characterized in detail. The Ag-GCN/CeO2 photocatalyst has successfully prepared by an electrostatic self-assembly approach. The synthesized Ag-GCN/CeO2 NCs photocatalysts are characterized by various physio-chemical techniques. Using the Ag-GCN/CeO2 catalyst, the excellent photodegradation efficiency of Acid yellow-36 (AY-36) and Direct yellow-12 (DY-12) dye solution were achieved 100% within 150 min sun light irradiation. The Ag-GCN/CeO2 rate constant values of 0.048 and 0.046/min has been determined for AY-36 and DR-12 dyes, respectively. The extraordinary photocatalytic activity is due to incorporation of CeO2 with Ag-GCN which play a significant role in visible light absorption, superior reactive oxygen generation (ROS) and excellent pollutant catalyst interaction. The toxicity of the photocatalytically degraded AY-36 and DR-12 dyes were measured using the soil nematode Caenorhabditis elegans, a well-established in vivo model in biology, by analyzing survival, physiological functions, intracellular ROS levels, and stress-protective gene expressions.


Assuntos
Nanocompostos , Prata , Prata/toxicidade , Prata/química , Espécies Reativas de Oxigênio , Nanocompostos/toxicidade , Nanocompostos/química , Luz , Corantes/química
4.
Pestic Biochem Physiol ; 193: 105447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248016

RESUMO

Bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial pathogen, which jeopardizes the sustainable rice (Oryza sativa L.) production system. The use of antibiotics and conventional pesticides has become ineffective due to increased pathogen resistance and associated ecotoxicological concerns. Thus, the development of effective and sustainable antimicrobial agents for plant disease management is inevitable. Here, we investigated the toxicity and molecular action mechanisms of bioengineered chitosan­iron nanocomposites (BNCs) against Xoo using transcriptomic and proteomic approaches. The transcriptomic and proteomics analyses revealed molecular antibacterial mechanisms of BNCs against Xoo. Transcriptomic data revealed that various processes related to cell membrane biosynthesis, antioxidant stress, DNA damage, flagellar biosynthesis and transcriptional regulator were impaired upon BNCs exposure, which clearly showing the interaction of BNCs to Xoo pathogen. Similarly, proteomic profiling showed that BNCs treatment significantly altered the levels of functional proteins involved in the integral component of the cell membrane, catalase activity, oxidation-reduction process and metabolic process in Xoo, which is consistent with the results of the transcriptomic analysis. Overall, this study suggested that BNCs has great potential to serve as an eco-friendly, sustainable, and non-toxic alternative to traditional agrichemicals to control the BLB disease in rice.


Assuntos
Quitosana , Oryza , Xanthomonas , Transcriptoma , Quitosana/farmacologia , Quitosana/metabolismo , Ferro/farmacologia , Ferro/metabolismo , Proteômica/métodos , Xanthomonas/metabolismo , Antibacterianos , Oryza/metabolismo , Doenças das Plantas/microbiologia
5.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630414

RESUMO

High concentrations of graphene oxide (GO), a nanoparticle substance with rapid manufacturing development, have the ability to penetrate the soil surface down to the mineral-rich subsurface layers. The destiny and distribution of such an unusual sort of nanomaterial in the environment must therefore be fully understood. However, the way the chemistry of solutions impacts GO nanoparticle adsorption on clay minerals is still unclear. Here, the adsorption of GO on clay minerals (e.g., bentonite and kaolinite) was tested under various chemical conditions (e.g., GO concentration, soil pH, and cation valence). Non-linear Langmuir and Freundlich models have been applied to describe the adsorption isotherm by comparing the amount of adsorbed GO nanoparticle to the concentration at the equilibrium of the solution. Our results showed fondness for GO in bentonite and kaolinite under similar conditions, but the GO nanoparticle adsorption with bentonite was superior to kaolinite, mainly due to its higher surface area and surface charge. We also found that increasing the ionic strength and decreasing the pH increased the adsorption of GO nanoparticles to bentonite and kaolinite, mainly due to the interaction between these clay minerals and GO nanoparticles' surface oxygen functional groups. Experimental data fit well to the non-linear pseudo-second-order kinetic model of Freundlich. The model of the Freundlich isotherm was more fitting at a lower pH and higher ionic strength in the bentonite soil while the lowest R2 value of the Freundlich model was recorded at a higher pH and lower ionic strength in the kaolinite soil. These results improve our understanding of GO behavior in soils by revealing environmental factors influencing GO nanoparticle movement and transmission towards groundwater.

6.
Environ Res ; 211: 113079, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276197

RESUMO

Silver doped hydroxyapatite and titanium oxide nanocomposites have been obtained by sol-gel techniques with novel antimicrobial activities for biomedical applications. The synthesis of Ca10-X AgX (PO4)6(OH)2 along with titanium oxide nanoparticles with XAg = 0 (HAp/TiO2), 0.1, 0.25 and 0.5 (Ag:HAp/TiO2-NCS) was performed. The developed crystalline phase was characterized via X-ray diffraction (XRD), and the morphological features were executed via scanning and transmission electron microscopy (SEM/TEM). The HAp/TiO2 and silver doped HAp/TiO2 nanocomposites were spherical grains, with needle and flower-like structures. XRD examination revealed the crystalline phases of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites. The crystallite size of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites determined from the XRD pattern was ranged between 16 nm and 20 nm. The FTIR analysis confirms the presence of stretching and vibrational peaks for the presence of silver doped HAp/TiO2. The EDAX analysis showed the existence of major elements of HAp/TiO2 and Ag-HAp/TiO2 nanostructured composites. HAp/TiO2 and silver doped HAp/TiO2 were active against both Gram-positive and Gram-negative bacteria such as, E. coli (MTCC 443), S. typhi (MTCC 733), and S. aureus (MTCC 3160). The photocatalytic absorption spectrum implied an increased absorption rate of methylene blue by HAp/TiO2 and silver doped HAp/TiO2 nanocomposites. The photocatalytic activity revealed that 50% Ag doped HAp/TiO2 optimally improved photocatalytic activity.


Assuntos
Nanocompostos , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanocompostos/química , Prata/química , Staphylococcus aureus , Titânio/química
7.
Environ Res ; 204(Pt A): 111915, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34419472

RESUMO

For the optimization of silver nanoparticle production, a central composite design was used with three parameters: AgNO3 concentration, green tea extract concentration, and temperature at three different levels. The size of the synthesized silver nanoparticle, its UV absorbance, zeta potential, and polydispersity index were set as the response parameters. Silver nanoparticles obtained in the optimization process were characterized and its efficacy on colorimetric detection of mercury was evaluated. The response variables were significant for the factors analyzed, and each variable had a significant model (P < 0.05). The ideal conditions were: 1 mM AgNO3, 0.5% green tea extract, and 80 °C temperature. To analyze the produced AgNPs under certain ideal conditions, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used. The UV-visible spectra of AgNPs revealed an absorption maxima at 424 nm. The XRD pattern reveals a significant diffraction peak at 38.25°, 44.26°, 64.43°, and 77.49°, which corresponds to the (111), (200), (220), and (311) planes of polycrystalline face-centered cubic (fcc) silver, respectively. The TEM and SEM analyses confirmed that the particles were spherical, and dynamic light scattering study determined the average diameter of AgNPs to be 77.4 nm. The AgNPs have a zeta potential of -62.6 mV, as determined by the zeta sizer analysis. The AgNPs detects mercury at a micromolar concentration. Furthermore, the environmentally friendly generated AgNPs were used to detect mercury in a colorimetric method that was effectively employed for analytical detection of Hg2+ ions in an aqueous environment for the purpose of practical application.


Assuntos
Mercúrio , Nanopartículas Metálicas , Antibacterianos , Colorimetria , Resíduos Industriais , Extratos Vegetais , Prata , Chá , Águas Residuárias
8.
Environ Res ; 206: 112492, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929189

RESUMO

Textile wastewater threatens people health by alluring diseases and revealing public existing close to the waste to the dangerous products within. Because waste causes a risk to the environment and people, waste management making is the main challenge of the municipal world. Environmental process such as toxic dye degradation can be stepped up through photochemical process such as visible light induced catalytic degradation. Here, the successful synthesis of co-doping of Al and F into TiO2 nanoparticles (Al-F∕TiO2 NPs) by solid state reaction method comprising different proportions of co-dopants is evaluated for the applications of degrading organic synthetic dyes and textile dyeing waste water. Influence of co-dopants was studied in their optical, structural, compositional, morphological and vibrational properties. The average crystallite size of Al-F∕TiO2 NPs was found as 15 nm.FTIR and UV-vis spectrum confirmed F and Al atoms were incorporated into the TiO2 lattice.The absorption edges slightly moved to shorter wavelength by increasing level of dopants and this specifies the control of optical absorption of TiO2 by the incorporation of F and Al3+ ions.The EDS spectrum indicates the purity of the samples. The highest zone of inhibition for the prepared nanoparticles over Staphylococcus aureus reached to 22 mm. The rate constant (kapp) value of MB, MO and textile waste water is 0.0138/min, 0.0174/min and 0.0139/min for the prepared nanoparticles respectively. The study of photocatalytic degradation of visible light assisted MB, MO and real textile waste water by Al-F∕TiO2 NPs revealed that the prepared nanoparticles act as ideal catalyst by tuning the concentration of co-dopants in TiO2.


Assuntos
Nanopartículas , Águas Residuárias , Catálise , Corantes , Humanos , Nanopartículas/química , Têxteis , Titânio/química , Águas Residuárias/química
9.
Environ Res ; 204(Pt B): 112073, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34537200

RESUMO

ZnGa2O4 nanocomposites have been widely used for photocatalytic degradation of industrial dyes. In this work, ZnGa2O4 was synthesized from zinc sulphate heptahydrate ZnSO4.10H2O and Gallium (III) oxide (Ga2O3) by hydrothermal method. As prepared, ZnGa2O4 nanocomposites was used as a photocatalyst degradation of three organic dyes rhodamine-B, methylene blue, and methyl orange, under ultraviolet (UV) light irradiation. The ZnGa2O4 nanocomposites structure, morphology, size and optical properties were studied by X-ray diffraction (XRD), Fourier transform Raman spectroscopy (FT-Raman), scanning electron microscopy (SEM), Transmission electron microscopes (TEM) and photoluminescence spectra (PL). Moreover, the results explained the rate-controlling mechanisms of the dye degradation process followed by second-order kinetics. After 100 min of adsorption kinetic models, the decomposition of rhodamine-B (7.2 Ct mg/L, 5.2 Ct mg/L, and 4.1 Ct mg/L), methylene blue (42.8 qt mg/g, 44.8 qt mg/g, and 45.9 qt mg/g), and methyl orange (42.8 qe mg/g, 44.8 qe mg/g, and 45.9 qe mg/g) respectively. This investigation study offers a promising method to design more efficient ZnGa2O4 nanocomposites based photocatalytic degradation of industrial organic dyes.


Assuntos
Nanocompostos , Catálise , Corantes , Azul de Metileno , Raios Ultravioleta
10.
Environ Res ; 214(Pt 1): 113829, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820654

RESUMO

Biosynthesis of metal oxide nanoparticles has attracted much attention in recent years owing to the increasing impact for improving hygienic substances, cost effective approaches, environment friendly solvents and reusable resources. The present study has shown the eco synthesis of TiO2 nanoparticles using the aqueous extract of egg shell waste. UV, XRD, FT-IR, and FE-SEM with EDX methods were implied for TiO2 nanoparticles. The agar well approach was used to investigate the antimicrobial properties of biosynthesized nanoparticles against pathogenic organisms. The cytotoxicity analysis was investigated by MTT assay method and photocatalytic activity was studied using methylene blue, methyl orange and Congo red dye. X-ray diffraction studies showed that the presence of tetragonal structure. The crystallite size of synthesized TiO2 nanoparticles is 27.3 nm. FE-SEM analysis indicates that the average grain size of the prepared sample was found to be in the range of 30-40 nm. Eco synthesis of TiO2 nanoparticles displayed amazing antimicrobial efficacies against human pathogenic organisms and obtained excellent cytotoxicity investigation was performed against Osteosarcoma cell lines (MG-63). Further it was also found that the expression of impressive catalytic efficiency, 91.1 percent decreased in 60 min for methylene blue. From the results, we found that eco synthesized TiO2 nanoparticles has promising utility in multidisciplinary like antimicrobial, anticancer and photocatalytic applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Animais , Antibacterianos , Catálise , Casca de Ovo , Humanos , Azul de Metileno , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio , Difração de Raios X
11.
Environ Res ; 209: 112822, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093306

RESUMO

Phenol is an organic contaminant widely distributed in wastewater. Biodegradation is one of the suitable methods used to remove phenol from the wastewater. In this study, the bacterial laccase and pectinase were analyzed and phenol degradation potential was studied. A total of six bacterial strains were selected and their phenol degrading potentials were studied. Laccase and pectinase producers were screened on substrate agar plates and several strains produced these enzymes in submerged fermentation. Among these enzyme producing strains, strain PD8 and PD22 exhibited potent phenol degrading ability than other strains. These two bacterial strains (Halomonas halodurans PD8 and Bacillus halodurans PD22) exhibited maximum growth in phenol-supplemented culture medium. These two organisms grown well at wide pH values (pH 3.0 and 10.0), survive well between 20 °C and 50 °C, and showed growth between 1 and 10% sodium chloride concentration. The lyophilized enzyme from PD8 and PD22 were immobilized with alginate beads cross liked with divalent cations. At 1% alginate, the binding efficiency was 40.2 ± 2.9% and it improved up to 2.0% concentration (67.5 ± 4.2%) and further increase on alginate concentration affected binding efficiency. Phenol degradation was maximum within 10 h of treatment in the immobilized packed bed column reactor (83.1 ± 3.2%) and colour removal efficiency was maximum at 12 h treatment (82.1 ± 3.9%). After four successive experimental trials more than 40% efficiency was achieved.


Assuntos
Reatores Biológicos , Águas Residuárias , Bacillus , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Halomonadaceae , Fenóis/metabolismo , Águas Residuárias/química
12.
Environ Res ; 208: 112686, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032540

RESUMO

Piper longum extract as a reducing agent in green synthesis method is used to synthesize ZnO nanoparticles (ZnO-NPs). The impact of the reductant on the structural, optical and surface morphological properties of ZnO-NPs can be analyzed. Piper longum extract has delicately tuned the band gap of ZnO-NPs. Increase in energy band gap indicates an increase in the number of capping molecules in the prepared ZnO nanoparticles. The carbohydrates and proteins not only play a fundamental role in ZnO capping, which is important for its stability, determination and biocompatibility. Thus obtained nanosized ZnO particles are confirmed by the surface morphological studies. Because of various surface interface properties might have different physical-chemical, desorption-adsorption abilities in the direction towards microbes, create different antibacterial performances. S.aureus has maximum inhibition zone of 23 mm and Escherichia coli has minimum inhibition zone of 7 mm. To assess the photocatalytic activity of the prepared ZnO-NPs under UV light irradiation, methyl orange, malachite green and methylene blue dyes were utilized as model contaminants. The degradation efficiency of MG, MB and MO dyes solution is found that 96%, 69% and 48% of degradation efficiency respectively under ultraviolet light irradiation. The properties of synthetic nanopowders suggest that they have important potential for a variety of biochemical and environmental applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Piper , Óxido de Zinco , Antibacterianos/farmacologia , Catálise , Nanopartículas Metálicas/química , Staphylococcus aureus , Óxido de Zinco/química
13.
Environ Monit Assess ; 195(1): 12, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271213

RESUMO

The goal of this study was to come up with an efficient method for treating cheese production wastewater. Because the effluent has a higher concentration of organic and inorganic materials, the indigenous microbial treatment process was used to effectively remove total dissolved solids (TDS), chemical oxygen demand (COD), and color without the addition of any nutrients. The indigenous microorganisms were tested for color, TDS, and COD elimination by growing them in "nutrient broth medium" loaded with different amounts of cheese effluent. The isolates were identified by 16S rRNA sequencing, and the results revealed that strain 1 was Enterobacter cloacae, strain 2 was Lactococcus garvieae, and strains 3 and 4 were Bacillus cereus and Bacillus mycoides, respectively. After 36 h of incubation, the data were evaluated. Among all the microbes, E. cloacae reduced TDS and COD from the effluent the most (80 ± 0.2% and 87 ± 0.4% COD, respectively). When compared to individual species, consortia were more efficient (86 ± 0.2% TDS and 90 ± 0.3% COD). On treatment, the correlation coefficient "r" for TDS and COD elimination was found to be 1, resulting in a positive linear connection. The current study suggests that microbial therapies are both effective and environmentally beneficial.


Assuntos
Queijo , Poluentes Ambientais , Monitoramento Ambiental , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
14.
Environ Res ; 199: 111370, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043971

RESUMO

Heavy metal ions in aqueous solutions are taken into account as one of the most harmful environmental issues that ominously affect human health. Pb(II) is a common pollutant among heavy metals found in industrial wastewater, and various methods were developed to remove the Pb(II). The adsorption method was more efficient, cheap, and eco-friendly to remove the Pb(II) from aqueous solutions. The removal efficiency depends on the process parameters (initial concentration, the adsorbent dosage of T-Fe3O4 nanocomposites, residence time, and adsorbent pH). The relationship between the process parameters and output is non-linear and complex. The purpose of the present study is to develop an artificial neural networks (ANN) model to estimate and analyze the relationship between Pb(II) removal and adsorption process parameters. The model was trained with the backpropagation algorithm. The model was validated with the unseen datasets. The correlation coefficient adj.R2 values for total datasets is 0.991. The relationship between the parameters and Pb(II) removal was analyzed by sensitivity analysis and creating a virtual adsorption process. The study determined that the ANN modeling was a reliable tool for predicting and optimizing adsorption process parameters for maximum lead removal from aqueous solutions.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Compostos Férricos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Redes Neurais de Computação , Soluções , Poluentes Químicos da Água/análise
15.
Anal Methods ; 16(18): 2869-2877, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639075

RESUMO

A nucleophilic addition based chemodosimeter was designed and synthesized with a carbazole donor and an indole acceptor. The addition of a cyanide ion to an electron-deficient indole moiety disrupts the acceptor-donor relationship, resulting in noticeable color shifts and spectrum differences in both the absorption and emission profiles. The design has a D-π-A molecular arrangement. Selectivity was investigated in 90% aqueous DMSO solution of probe CI with various anions such as SCN-, PF6-, NO3-, N3-, I-, HSO4-, CN-, H2PO4-, F-, HS-, ClO4-, Cl-, Br-, and AcO-. An intermolecular charge transfer (ICT) band at 506 nm in the UV-visible spectra vanished and the intensity of emission was quenched at 624 nm upon the addition of CN- ions. These outcomes demonstrate the effective nucleophilic addition of cyanide ions to the electron-deficient indole moiety of the probe, resulting in the formation of a new adduct in which the ICT transition is interrupted when π conjugation is blocked. The Job plot, 1H NMR spectroscopy, and HRMS analysis confirmed the formation of a new product. An outstanding response was shown by paper test strips made using probe molecules for the easy detection of cyanide ions in aqueous solutions. Besides, the probe selectively senses cyanide ions in different water samples.

16.
Drug Des Devel Ther ; 18: 597-612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436040

RESUMO

Purpose: New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic activity, and molecular docking. Methods: The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory activities of all the synthesised compounds were evaluated. Results: Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01µg/mL). However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (-8.6 kcal/mol compared to (-4.7 kcal/mol), making it more effective. Conclusion: All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.


Assuntos
Agaricales , Antineoplásicos , Ciclopentanos , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cinética , Antibacterianos/farmacologia , Antraquinonas/farmacologia
17.
Int J Pharm ; 651: 123749, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159587

RESUMO

Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is linked to hormonal imbalances and oxidative stress. Our study investigates the regenerative potential of apigenin (AP, hydrophobic) and ascorbic acid (AC, hydrophilic) encapsulated within poly (allylamine hydrochloride) and dextran sulfate (PAH/DS) hollow microcapsules for PCOS. These microcapsules, constructed using a layer-by-layer (LbL) assembly, are found to be 4 ± 0.5 µm in size. Our research successfully demonstrates the co-encapsulation of AP and AC in a single PAH/DS system with high encapsulation efficiency followed by successful release at physiological conditions by CLSM investigations. In vitro tests with testosterone-treated CHO cells reveal that the dual-drug-loaded PAH/DS capsules effectively reduce intracellular ROS levels and apoptosis and offering protection. In an in-vivo zebrafish model, these capsules demonstrate active biodistribution to targeted ovaries and reduce testosterone levels through radical scavenging. Histopathological examinations show that the injected dual-drug-loaded PAH/DS microcapsules assist in the development of ovarian follicles in testosterone-treated zebrafish. Hence, this dual-drug-loaded system, capable of co-encapsulating two natural compounds, effectively interacts with ovarian cells, reducing cellular damage and normalizing PCOS conditions.


Assuntos
Síndrome do Ovário Policístico , Animais , Cricetinae , Feminino , Humanos , Polieletrólitos , Síndrome do Ovário Policístico/tratamento farmacológico , Apigenina , Peixe-Zebra , Cápsulas/química , Ácido Ascórbico , Distribuição Tecidual , Cricetulus , Testosterona
18.
PeerJ ; 12: e16944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495762

RESUMO

Background: The chickpea pod borer Helicoverpa armigera (Hübner) is a significant insect pest of chickpea crops, causing substantial global losses. Methods: Field experiments were conducted in Central Punjab, Pakistan, to investigate the impact of biotic and abiotic factors on pod borer population dynamics and infestation in nine kabuli chickpea genotypes during two cropping seasons (2020-2021 and 2021-2022). The crops were sown in November in both years, with row-to-row and plant-to-plant distances of 30 and 15 cm, respectively, following a randomized complete block design (RCBD). Results: Results showed a significant difference among the tested genotypes in trichome density, pod wall thickness, and leaf chlorophyll contents. Significantly lower larval population (0.85 and 1.10 larvae per plant) and percent damage (10.65% and 14.25%) were observed in genotype Noor-2019 during 2020-2021 and 2021-2022, respectively. Pod trichome density, pod wall thickness, and chlorophyll content of leaves also showed significant variation among the tested genotypes. Pod trichome density and pod wall thickness correlated negatively with larval infestation, while chlorophyll content in leaves showed a positive correlation. Additionally, the larval population positively correlated with minimum and maximum temperatures, while relative humidity negatively correlated with the larval population. Study results explore natural enemies as potential biological control agents and reduce reliance on chemical pesticides.


Assuntos
Cicer , Mariposas , Animais , Clorofila , Cicer/genética , Produtos Agrícolas/genética , Genótipo , Helicoverpa armigera , Larva/genética , Mariposas/genética
19.
Antioxidants (Basel) ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38671947

RESUMO

Amaranth is a nutritionally valuable crop, as it contains phenolic acids and flavonoids, yielding diverse plant secondary metabolites (PSMs) like phytosterol, tocopherols, and carotenoids. This study explored the variations in the contents of seventeen polyphenolic compounds within the leaves of one hundred twenty Amaranthus accessions representing nine Amaranthus species. The investigation entailed the analysis of phenolic content across nine Amaranthus species, specifically A. hypochondriacus, A. cruentus, A. caudatus, A. tricolor, A. dubius, A. blitum, A. crispus, A. hybridus, and A. viridis, utilizing ultra performance liquid chromatography with photodiode array detection (UPLC-PDA). The results revealed significant differences in polyphenolic compounds among accessions in which rutin content was predominant in all Amaranthus species in both 2018 and 2019. Among the nine Amaranthus species, the rutin content ranged from 95.72 ± 199.17 µg g-1 (A. dubius) to 1485.09 ± 679.51 µg g-1 (A. viridis) in 2018 and from 821.59 ± 709.95 µg g-1 (A. tricolor) to 3166.52 ± 1317.38 µg g-1 (A. hypochondriacus) in 2019. Correlation analysis revealed, significant positive correlations between rutin and kaempferol-3-O-ß-rutinoside (r = 0.93), benzoic acid and ferulic acid (r = 0.76), and benzoic acid and kaempferol-3-O-ß-rutinoside (r = 0.76), whereas gallic acid showed consistently negative correlations with each of the 16 phenolic compounds. Wide variations were identified among accessions and between plants grown in the two years. The nine species and one hundred twenty Amaranthus accessions were clustered into six groups based on their seventeen phenolic compounds in each year. These findings contribute to expanding our understanding of the phytochemical traits of accessions within nine Amaranthus species, which serve as valuable resources for Amaranthus component breeding and functional material development.

20.
Front Plant Sci ; 14: 1147390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426961

RESUMO

The global population growth has led to a higher demand for food production, necessitating improvements in agricultural productivity. However, abiotic and biotic stresses pose significant challenges, reducing crop yields and impacting economic and social welfare. Drought, in particular, severely constrains agriculture, resulting in unproductive soil, reduced farmland, and jeopardized food security. Recently, the role of cyanobacteria from soil biocrusts in rehabilitating degraded land has gained attention due to their ability to enhance soil fertility and prevent erosion. The present study focused on Nostoc calcicola BOT1, an aquatic, diazotrophic cyanobacterial strain collected from an agricultural field at Banaras Hindu University, Varanasi, India. The aim was to investigate the effects of different dehydration treatments, specifically air drying (AD) and desiccator drying (DD) at various time intervals, on the physicochemical properties of N. calcicola BOT1. The impact of dehydration was assessed by analyzing the photosynthetic efficiency, pigments, biomolecules (carbohydrates, lipids, proteins, osmoprotectants), stress biomarkers, and non-enzymatic antioxidants. Furthermore, an analysis of the metabolic profiles of 96-hour DD and control mats was conducted using UHPLC-HRMS. Notably, there was a significant decrease in amino acid levels, while phenolic content, fatty acids, and lipids increased. These changes in metabolic activity during dehydration highlighted the presence of metabolite pools that contribute to the physiological and biochemical adjustments of N. calcicola BOT1, mitigating the impact of dehydration to some extent. Overall, present study demonstrated the accumulation of biochemical and non-enzymatic antioxidants in dehydrated mats, which could be utilized to stabilize unfavorable environmental conditions. Additionally, the strain N. calcicola BOT1 holds promise as a biofertilizer for semi-arid regions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa