Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Immunol Immunother ; 69(3): 477-488, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980913

RESUMO

BACKGROUND: Autologous dendritic cell (DC) vaccines can induce tumor-specific T cells, but their effect can be counteracted by immunosuppressive mechanisms. Cisplatin has shown immunomodulatory effects in vivo which may enhance efficacy of DC vaccination. METHODS: This is a prospective, randomized, open-label phase 2 study (NCT02285413) including stage III and IV melanoma patients receiving 3 biweekly vaccinations of gp100 and tyrosinase mRNA-loaded monocyte-derived DCs with or without cisplatin. Primary objectives were to study immunogenicity and feasibility, and secondary objectives were to assess toxicity and survival. RESULTS: Twenty-two stage III and 32 stage IV melanoma patients were analyzed. Antigen-specific CD8+ T cells were found in 44% versus 67% and functional T cell responses in 28% versus 19% of skin-test infiltrating lymphocytes in patients receiving DC vaccination with and without cisplatin, respectively. Four patients stopped cisplatin because of toxicity and continued DC monotherapy. No therapy-related grade 3 or 4 adverse events occurred due to DC monotherapy. During combination therapy, one therapy-related grade 3 adverse event, decompensated heart failure due to fluid overload, occurred. The clinical outcome parameters did not clearly suggest significant differences. CONCLUSIONS: Combination of DC vaccination and cisplatin in melanoma patients is feasible and safe, but does not seem to result in more tumor-specific T cell responses or improved clinical outcome, when compared to DC vaccination monotherapy.


Assuntos
Vacinas Anticâncer/uso terapêutico , Cisplatino/uso terapêutico , Células Dendríticas/imunologia , Melanoma/tratamento farmacológico , Adolescente , Adulto , Idoso , Vacinas Anticâncer/farmacologia , Cisplatino/farmacologia , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Monócitos/imunologia , Estadiamento de Neoplasias , Estudos Prospectivos , Vacinação , Adulto Jovem
2.
J Transl Med ; 14: 88, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075584

RESUMO

BACKGROUND: Melanoma is the most lethal type of skin cancer and its incidence is progressively increasing. The introductions of immunotherapy and targeted therapies have tremendously improved the treatment of melanoma. Selective inhibition of BRAF by vemurafenib results in objective clinical responses in around 50 % of patients suffering from BRAFV600 mutated melanoma. However, drug resistance often results in hampering long-term tumor control. Alternatively, immunotherapy by vaccination with natural dendritic cells (nDCs) demonstrated long-term tumor control in a proportion of patients. We postulate that the rapid tumor debulking by vemurafenib can synergize the long-term tumor control of nDC vaccination to result in an effective treatment modality in a large proportion of patients. Here, we investigated the feasibility of this combination by analyzing the effect of vemurafenib on the functionality of nDCs. METHODS: Plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were isolated from PBMCs obtained from buffy coats from healthy volunteers or vemurafenib-treated melanoma patients. Maturation of pDCs, mDCs and immature monocyte-derived DCs was induced by R848 in the presence or absence of vemurafenib and analyzed by FACS. Cytokine production and T cell proliferation induced by mature DCs were analyzed. RESULTS: Vemurafenib inhibited maturation and cytokine production of highly purified nDCs of healthy volunteers resulting in diminished allogeneic T cell proliferation. This deleterious effect of vemurafenib on nDC functionality was absent when total PBMCs were exposed to vemurafenib. In patients receiving vemurafenib, nDC functionality and T cell allostimulatory capacity were unaffected. CONCLUSION: Although vemurafenib inhibited the functionality of purified nDC of healthy volunteers, this effect was not observed when nDCs were matured in the complete PBMC fraction. This might have been caused by increased vemurafenib uptake in absence of other cell types. In accordance, nDCs isolated from patients on active vemurafenib treatment showed no negative effects. In conclusion, our results pave the way for a combinatorial treatment strategy and, we propose that combining vemurafenib with nDC vaccination represent a powerful opportunity that deserves more investigation in the clinic.


Assuntos
Células Dendríticas/imunologia , Células Mieloides/imunologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Vacinação , Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Disponibilidade Biológica , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Indóis/sangue , Indóis/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Melanoma/sangue , Melanoma/patologia , Células Mieloides/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Sulfonamidas/sangue , Sulfonamidas/farmacologia , Vemurafenib
3.
J Virol ; 88(6): 3369-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390337

RESUMO

UNLABELLED: RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3C(pro), whereas MAVS cleavage by enterovirus 71 has been attributed to 2A(pro). As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2A(pro), while RIG-I is cleaved by 3C(pro). Moreover, we show that proteinases 2A(pro) and 3C(pro) of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2A(pro) by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells. IMPORTANCE: Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2A(pro)) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cisteína Endopeptidases/metabolismo , RNA Helicases DEAD-box/metabolismo , Enterovirus Humano B/enzimologia , Infecções por Enterovirus/metabolismo , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cisteína Endopeptidases/genética , RNA Helicases DEAD-box/genética , Enterovirus Humano B/genética , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/enzimologia , Infecções por Enterovirus/genética , Infecções por Enterovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon , Fosforilação , Proteólise , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Proteínas Virais/genética
4.
Gynecol Oncol ; 137(2): 335-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25727651

RESUMO

Ovarian cancer is a devastating disease with a high relapse rate. Due to a mostly asymptomatic early stage and lack of early diagnostic tools, the disease is usually diagnosed in a late stage. Surgery and chemotherapy with taxanes and platinum compounds are very effective in reducing tumor burden. However, relapses occur frequently and there is a lack of credible second-line options. Therefore, new treatment modalities are eagerly awaited. The presence and influx of immune cells in the ovarian cancer tumor microenvironment are correlated with survival. High numbers of infiltrating T cells correlate with improved progression free and overall survival, while the presence of regulatory T cells and expression of T cell inhibitory molecules is correlated with a poor prognosis. These data indicate that immunotherapy, especially cell-based immunotherapy could be a promising novel addition to the treatment of ovarian cancer. Here, we review the available data on the immune contexture surrounding ovarian cancer and discuss novel strategies and targets for immunotherapy in ovarian cancer. In the end the addition of immunotherapy to existing therapeutic options could lead to a great improvement in the outcome of ovarian cancer, especially when targeting cancer stem cells.


Assuntos
Imunoterapia/métodos , Células-Tronco Neoplásicas/imunologia , Neoplasias Ovarianas/terapia , Feminino , Humanos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia
5.
Crit Rev Immunol ; 34(6): 517-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25597314

RESUMO

Dendritic cells (DCs) are key players in the induction of immune responses. Adoptive transfer of autologous mature DCs loaded with tumor-associated antigens is a promising therapy for the treatment of immunogenic tumors. For a long time, its therapeutic activity was thought to depend solely on the induction of tumor-specific CD8+ and CD4+ T cell responses. More recently, DCs were shown to bidirectionally interact with innate and innate-like immune cells, including natural killer (NK), invariant natural killer T (iNKT), and γδ T cells. These effector cells can amplify responses induced by DCs via several mechanisms, including induction of DC maturation and conventional T cell priming. In addition, NK, iNKT, and γδ T cells possess cytolytic activity and can act directly on tumor cells. Therapeutic strategies targeting these innate and innate-like immune cells hence hold potential to improve current DC vaccination protocols.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos/citologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Comunicação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/transplante , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata , Células Matadoras Naturais/citologia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Transdução de Sinais , Linfócitos T Citotóxicos/citologia , Vacinação
6.
Cancer Immunol Immunother ; 61(7): 1101-11, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22193989

RESUMO

It has become evident that the tumor microenvironment plays a pivotal role in the maintenance of cancerous growth. One of the acquired functions of the tumor microenvironment is the suppression of immune responses. Indeed, blocking the inhibitory pathways operational in the microenvironment results in enhanced T-cell-dependent, anti-tumor immunity. Chemotherapeutic drugs not only directly kill tumor cells but also shape the tumor microenvironment and potentiate anti-tumor immunity. Here, we demonstrate that the chemotherapeutic compound oxaliplatin acts as a double-edged sword. Besides killing tumor cells, oxaliplatin bolsters immunosuppressive pathways, resulting in decreased activation of T cells by human plasmacytoid dendritic cells (pDCs). Exposure to oxaliplatin markedly increased expression of the T-cell inhibitory molecule programmed death receptor-ligand 1 (PD-L1) on human pDCs and also TLR9-induced IFNα secretion. Furthermore, oxaliplatin decreased TLR-induced STAT1 and STAT3 expression, and NF-κB-mediated responses. The oxaliplatin induced upregulation of PD-L1 and downregulation of costimulatory molecules CD80 and CD86 resulted in decreased T-cell proliferation. Our results demonstrate that platinum-based anticancer drugs adapt TLR-induced signaling in human pDCs and myeloid DCs (mDCs), thereby downgrading their immunostimulatory potential.


Assuntos
Células Dendríticas/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/imunologia , Diferenciação Celular , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/imunologia , Células Dendríticas/imunologia , Humanos , Interferon Tipo I/imunologia , Interleucina-6/imunologia , Ativação Linfocitária/efeitos dos fármacos , Oxaliplatina , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Receptor Toll-Like 9/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia
7.
Am J Pathol ; 178(5): 2091-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21514424

RESUMO

Both the immune system and the epidermis likely have an important role in the pathogenesis of atopic dermatitis (AD). The objective of the present study was to develop a human skin equivalent model exhibiting morphologic and molecular characteristics of AD in a controlled manner. Skin equivalents generated from normal adult human keratinocytes were stimulated with type 2 T-helper cell (Th2) cytokines IL-4 and IL-13, and morphologic features and gene expression of the epidermis were studied. Th2 cytokines induced intercellular edema similar to spongiotic changes observed in lesional AD as assessed at histopathologic analysis and electron microscopy. Furthermore, genes known to be specifically expressed in epidermis of patients with AD such as CAII and NELL2 were induced. In contrast, expression of psoriasis-associated genes such as elafin and hBD2 was not changed. Th2 cytokines caused DNA fragmentation in the keratinocytes, which could be inhibited by the caspase inhibitor Z-VAD, which suggests that apoptosis was induced. In addition, up-regulation of the death receptor Fas was observed in keratinocytes after Th2 cytokine stimulation. IL-4 and IL-13 induced phosphorylation of the signaling molecule STAT6. It was concluded that the skin equivalent model described herein may be useful in investigation of the epidermal aspects of AD and for study of drugs that act at the level of keratinocyte biology.


Assuntos
Dermatite Atópica/genética , Dermatite Atópica/patologia , Expressão Gênica , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Engenharia Tecidual/métodos , Adulto , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Dermatite Atópica/imunologia , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-13/imunologia , Interleucina-4/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Microscopia Eletrônica de Transmissão , Técnicas de Cultura de Órgãos , Fosforilação , Fator de Transcrição STAT6/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
8.
Clin Dev Immunol ; 2012: 656340, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22611421

RESUMO

Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied and therapeutic approaches targeting PD-1 and PD-L1 have been developed and are undergoing human clinical testing. However, PD-L2 has not received as much attention and its role in modulating tumor immunity is less clear. Here, we review the literature on the immunobiology of PD-L2, particularly on its possible roles in cancer-induced immune suppression and we discuss the results of recent studies targeting PD-L2 in cancer.


Assuntos
Terapia de Imunossupressão , Neoplasias/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Camundongos , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Evasão Tumoral , Microambiente Tumoral
9.
Cell Microbiol ; 12(3): 310-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19863558

RESUMO

Picornaviruses encompass a large family of RNA viruses. Some picornaviruses possess a leader (L) protein at the N-terminus of their polyprotein. The L proteins of encephalomyocarditis virus, a cardiovirus, and foot-and-mouth disease virus (FMDV), an aphthovirus, are both dispensable for replication and their major function seems to be the suppression of antiviral host cell responses. Previously, we showed that the L protein of mengovirus, a strain of encephalomyocarditis virus, inhibits antiviral responses by inhibiting type I interferon (IFN-alpha/beta) gene transcription. The L protein of the FMDV is a protease (L(pro)) that cleaves cellular factors to reduce cytokine and chemokine mRNA production and to inhibit cap-dependent cellular host mRNA translation, thereby limiting the production of proteins with antiviral activity. In this study, we constructed a viable chimeric mengovirus that expresses FMDV L(pro) in place of the authentic L protein in order to compare the efficiency of the immune evasion mechanisms mediated by L and L(pro) respectively. We show that in this mengovirus background the L protein is more potent than FMDV L(pro) in suppressing IFN-alpha/beta responses. Yet, FMDV L(pro) is important to antagonize infection-limiting responses both in vitro and in vivo.


Assuntos
Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/patogenicidade , Interferon-alfa/imunologia , Interferon beta/imunologia , Mengovirus/imunologia , Mengovirus/patogenicidade , Proteínas Virais/imunologia , Animais , Infecções por Cardiovirus/patologia , Infecções por Cardiovirus/virologia , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Interferon-alfa/antagonistas & inibidores , Interferon beta/antagonistas & inibidores , Mengovirus/genética , Mengovirus/crescimento & desenvolvimento , Camundongos , Recombinação Genética , Análise de Sobrevida , Carga Viral , Proteínas Virais/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia
10.
Oncoimmunology ; 10(1): 1935557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239773

RESUMO

Cancer immunotherapies have induced long-lasting responses in cancer patients including those with melanoma and head and neck squamous cell carcinoma (HNSCC). However, the majority of treated patients does not achieve clinical benefit from immunotherapy because of systemic tumor-induced immunosuppression. Monocytic myeloid-derived suppressor cells (M-MDSCs) are implicated as key players in inhibiting anti-tumor immune responses and their frequencies are closely associated with tumor progression. Tumor-derived signals, including signaling via STAT3-COX-2, induce the transformation of monocytic precursors into suppressive M-MDSCs. In a retrospective assessment, we observed that survival of melanoma patients undergoing dendritic cell vaccination was negatively associated with blood M-MDSC levels. Previously, it was shown that platinum-based chemotherapeutics inhibit STAT signaling. Here, we show that cisplatin and oxaliplatin treatment interfere with the development of M-MDSCs, potentially synergizing with cancer immunotherapy. In vitro, subclinical doses of platinum-based drugs prevented the generation of COX-2+ M-MDSCs induced by tumor cells from melanoma patients. This was confirmed in HNSCC patients where intravenous cisplatin treatment drastically lowered M-MDSC frequency while monocyte levels remained stable. In treated patients, expression of COX-2 and arginase-1 in M-MDSCs was significantly decreased after two rounds of cisplatin, indicating inhibition of STAT3 signaling. In line, the capacity of M-MDSCs to inhibit activated T cell responses ex vivo was significantly decreased after patients received cisplatin. These results show that platinum-based chemotherapeutics inhibit the expansion and suppressive activity of M-MDSCs in vitro and in cancer patients. Therefore, platinum-based drugs have the potential to enhance response rates of immunotherapy by overcoming M-MDSC-mediated immunosuppression.


Assuntos
Melanoma , Células Supressoras Mieloides , Cisplatino/farmacologia , Humanos , Melanoma/tratamento farmacológico , Monócitos , Estudos Retrospectivos
11.
J Virol ; 83(21): 11223-32, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19710133

RESUMO

The leader protein of cardioviruses, Theiler's murine encephalomyelitis virus (TMEV) and encephalomyocarditis virus (EMCV), is a multifunctional protein known to antagonize type I interferon expression and to interfere with nucleocytoplasmic trafficking of host proteins and mRNA. This protein plays an important role in the capacity of TMEV to establish persistent infection of the central nervous system. Mutant forms of the TMEV leader protein were generated by random mutagenesis and selected after retroviral transduction on the basis of the loss of the highly toxic nature of this protein. Selected mutations define a short C-terminal domain of the leader conserved in TMEV and Saffold virus but lacking in the EMCV leader and thus called the Theilo domain. Mutations in this domain had a dramatic impact on TMEV L protein activity. Like the zinc finger mutation, Theilo domain mutations affected all of the activities of the L protein tested: interferon gene transcription and IRF-3 dimerization antagonism, alteration of nucleocytoplasmic trafficking, nucleoporin 98 hyperphosphorylation, and viral persistence in vivo. This suggests that the Zn finger and the Theilo domain of the protein cooperate for function. Moreover, the fact that all of the activities tested were affected by these mutations suggests that the various leader protein functions are somehow coupled.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Citocinas/genética , Regulação da Expressão Gênica , Theilovirus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/virologia , Linhagem Celular , Citocinas/metabolismo , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Theilovirus/metabolismo , Proteínas Virais/metabolismo
12.
J Virol ; 83(14): 7273-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19420082

RESUMO

Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.


Assuntos
Apoptose , Infecções por Cardiovirus/fisiopatologia , Vírus da Encefalomiocardite/metabolismo , Proteínas Virais/metabolismo , Animais , Cardiovirus/genética , Cardiovirus/metabolismo , Infecções por Cardiovirus/metabolismo , Infecções por Cardiovirus/virologia , Linhagem Celular , Cricetinae , Citocromos c/metabolismo , Vírus da Encefalomiocardite/genética , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas Virais/genética
13.
J Virol ; 83(19): 9940-51, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19605479

RESUMO

In the natural environment, animal and plant viruses often share ecological niches with microorganisms, but the interactions between these pathogens, although potentially having important implications, are poorly investigated. The present report demonstrates, in a model system, profound mutual effects of mycoplasma and cardioviruses in animal cell cultures. In contrast to mycoplasma-free cells, cultures contaminated with Mycoplasma hyorhinis responded to infection with encephalomyocarditis virus (EMCV), a picornavirus, but not with poliovirus (also a picornavirus), with a strong activation of a DNase(s), as evidenced by the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) immunofluorescence assay and electrophoretic analysis of host DNA. This degradation was reminiscent of that observed upon apoptosis but was caspase independent, judging by the failure of the specific pan-caspase inhibitor Q-VD-OPh to prevent it. The electrophoretic mobility of the enzyme responsible for DNA degradation and dependence of its activity on ionic conditions strongly suggested that it was represented by a DNase(s) of mycoplasma origin. In cells not infected with EMCV, the relevant DNase was dormant. The possibility is discussed that activation of the mycoplasma DNase might be linked to a relatively early increase in permeability of plasma membrane of the infected cells caused by EMCV. This type of unanticipated virus-mycoplasma "cooperation" may exemplify the complexity of pathogen-host interactions under conditions when viruses and microorganisms are infecting the same host. In the course of the present study, it was also demonstrated that pan-caspase inhibitor zVAD(OMe).fmk strongly suppressed cardiovirus polyprotein processing, illustrating an additional pitfall in investigations of viral effects on the apoptotic system of host cells.


Assuntos
Cardiovirus/metabolismo , Infecções por Mycoplasma/diagnóstico , Mycoplasma/metabolismo , Clorometilcetonas de Aminoácidos/metabolismo , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Efeito Citopatogênico Viral , Desoxirribonucleases/metabolismo , Células HeLa , Humanos , Marcação In Situ das Extremidades Cortadas , Microscopia de Fluorescência/métodos , Modelos Biológicos , Infecções por Mycoplasma/metabolismo , Biossíntese de Proteínas
14.
J Immunol Res ; 2019: 7458238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309123

RESUMO

The STAT signaling pathway is important in dendritic cell (DC) development and function. Tumor cells can induce STAT signaling, thereby inhibiting DC maturation and immunostimulatory functions, leading to hampered efficacy of DC-based immunotherapies. Platinum-based chemotherapeutics can inhibit STAT signaling, thereby making them an interesting tool to improve DC development and function. In this study, we provide a comprehensive overview of STAT expression and phosphorylation during DC differentiation and maturation and investigate the effects of platinum drugs on STAT signaling during these processes. Monocytes were differentiated into monocyte-derived DCs (moDCs) with IL-4 and GM-CSF and matured with cytokines or TLR ligands. STAT expression and phosphorylation were analyzed by western blotting, and moDC viability and phenotype were analyzed by flow cytometry. Platinum drugs were added at day 3 of differentiation or at the start of maturation to investigate regulation of the STAT signaling pathway. All STAT proteins were expressed during moDC differentiation and STAT1, STAT5, and STAT6 were phosphorylated. No significant changes occurred in the expression and phosphorylation state of the STAT proteins during differentiation. After maturation with TLR ligands, the expression of STAT1 increased, but other STAT proteins were not affected. Phosphorylation of STAT1 and STAT3 increased during maturation, where TLR ligands induced significantly higher levels of phosphorylation than cytokines. Platinum drugs cisplatin and oxaliplatin significantly inhibited phosphorylation of STAT6 during differentiation and maturation. Treatment did not affect the phenotype or viability of the cells. As STAT6 is an important regulator of DC function, these findings suggest a role for platinum-based chemotherapeutics to enhance DC function via inhibition of STAT signaling, thereby potentially enhancing efficacy of DC-based immunotherapies.


Assuntos
Antineoplásicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Platina/farmacologia , Fatores de Transcrição STAT/metabolismo , Biomarcadores , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Expressão Gênica , Humanos , Imunofenotipagem , Fosforilação , Fatores de Transcrição STAT/genética , Transdução de Sinais
15.
Oncotarget ; 8(33): 54434-54443, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903353

RESUMO

Platinum-based chemotherapeutics are amongst the most powerful anti-cancer drugs. Although their exact mechanism of action is not well understood, it is thought to be mediated through covalent DNA binding. We investigated the effect of platinum-based chemotherapeutics on signaling through signal transducer and activator of transcription (STAT) proteins, which are involved in many oncogenic signaling pathways. We performed in vitro experiments in various cancer cell lines, investigating the effects of platinum chemotherapeutics on STAT phosphorylation and nuclear translocation, the expression of STAT-modulating proteins and downstream signaling pathways. Direct binding of platinum to STAT proteins was assessed using an AlphaScreen assay. Nuclear STAT3 expression was determined by immunohistochemistry and correlated with disease-free survival in retrospective cohorts of head and neck squamous cell carcinoma (HNSCC) patients treated with cisplatin-based chemoradiotherapy (n= 65) or with radiotherapy alone (n = 32). At clinically relevant concentrations, platinum compounds inhibited STAT phosphorylation, resulting in loss of constitutively activated STAT proteins in multiple distinct cancer cell lines. Platinum drugs specifically inhibited phospho-tyrosine binding to SH2 domains, thereby blocking STAT activation, and subsequently downregulating pro-survival- and anti-apoptotic- target genes. Importantly, we found that active STAT3 in tumors directly correlated with response to cisplatin-based chemoradiotherapy in HNSCC patients (p = 0.006). These findings provide insight into a novel, non-DNA-targeted mechanism of action of platinum drugs, and could be leveraged into the use of STAT expression as predictive biomarker for cisplatin chemotherapy and to potentiate other therapeutic strategies such as immunotherapy.

16.
Oncotarget ; 8(40): 67439-67456, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978044

RESUMO

Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (PEBP1)/Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low PEBP1 expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease.

17.
Oncoimmunology ; 5(7): e1196312, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622051

RESUMO

Cancer immunotherapy is a promising therapeutic avenue; however, in practice its efficacy is hampered by an immunosuppressive tumor microenvironment that consists of suppressive cell types like myeloid-derived suppressor cells (MDSCs). Eradication or reprogramming of MDSCs could therefore enhance clinical responses to immunotherapy. Here, we review clinically available drugs that target MDSCs, often through inhibition of STAT signaling, which is essential for MDSC accumulation and suppressive functions. Interestingly, several drugs used for non-cancerous indications and natural compounds similarly inhibit MDSCs by STAT inhibition, but have fewer side effects than anticancer drugs. Therefore, they show great potential for combination strategies with immunotherapy.

18.
Cancer Res ; 76(15): 4332-46, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325645

RESUMO

The tumor microenvironment is characterized by regulatory T cells, type II macrophages, myeloid-derived suppressor cells, and other immunosuppressive cells that promote malignant progression. Here we report the identification of a novel BDCA1(+)CD14(+) population of immunosuppressive myeloid cells that are expanded in melanoma patients and are present in dendritic cell-based vaccines, where they suppress CD4(+) T cells in an antigen-specific manner. Mechanistic investigations showed that BDCA1(+)CD14(+) cells expressed high levels of the immune checkpoint molecule PD-L1 to hinder T-cell proliferation. While this BDCA1(+)CD14(+) cell population expressed markers of both BDCA1(+) dendritic cells and monocytes, analyses of function, transcriptome, and proteome established their unique nature as exploited by tumors for immune escape. We propose that targeting these cells may improve the efficacy of cancer immunotherapy. Cancer Res; 76(15); 4332-46. ©2016 AACR.


Assuntos
Vacinas Anticâncer/genética , Células Dendríticas/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Melanoma/genética , Células Progenitoras Mieloides/metabolismo , Proliferação de Células , Humanos , Melanoma/patologia , Microambiente Tumoral
19.
Oncoimmunology ; 5(8): e1192739, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27622063

RESUMO

Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation. Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c(+) DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c(+) DCs are critical mediators of immune responses induced by ICD.

20.
Clin Cancer Res ; 20(11): 2831-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879823

RESUMO

The platinum-based drugs cisplatin, carboplatin, and oxaliplatin belong to the most widely used chemotherapeutics in oncology, showing clinical efficacy against many solid tumors. Their main mechanism of action is believed to be the induction of cancer cell apoptosis as a response to their covalent binding to DNA. In recent years, this picture has increased in complexity, based on studies indicating that cellular molecules other than DNA may potentially act as targets, and that part of the antitumor effects of platinum drugs occurs through modulation of the immune system. These immunogenic effects include modulation of STAT signaling; induction of an immunogenic type of cancer cell death through exposure of calreticulin and release of ATP and high-mobility group protein box-1 (HMGB-1); and enhancement of the effector immune response through modulation of programmed death receptor 1-ligand and mannose-6-phosphate receptor expression. Both basic and clinical studies indicate that at least part of the antitumor efficacy of platinum chemotherapeutics may be due to immune potentiating mechanisms. Clinical studies exploiting this novel mechanism of action of these old cancer drugs have been initiated. Here, we review the literature on the immunogenic effects of platinum, summarize the clinical advances using platinum as a cytotoxic compound with immune adjuvant properties, and discuss the limitations to these studies and the gaps in our understanding of the immunologic effects of these drugs. Clin Cancer Res; 20(11); 2831-7. ©2014 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Compostos de Platina/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa