Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anal At Spectrom ; 39(5): 1388-1397, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38737797

RESUMO

The analytical capabilities of a nitrogen-sustained high-power microwave inductively coupled atmospheric-pressure plasma mass spectrometer (N2 MICAP-MS) were investigated using solution nebulization with and without aerosol desolvation. The reduced solvent load for the desolvated aerosol and the increased aerosol transfer resulted in a signal enhancement of ten times for most elements in samples without a significant amount of dissolved solids. An exception was boron, whose signal decreased by a factor of seven when a desolvator was used. To compare the accuracy, reproducibility, and matrix susceptibility of the N2 MICAP-MS, the mass fractions of 30 elements were determined in two certified water reference materials using external calibration and standard addition. The results were generally found to agree within 10% of the certified reference values with a maximum deviation of 17% in the case of 64Zn. Comparing external calibration and standard addition provided comparable results regardless of the sample introduction method. To assess the extent of matrix effects, multi-element standard solutions were doped with amounts of up to 100 mg kg-1 calcium. This resulted in a signal suppression of up to 30% and 70% for conventional nebulization and aerosol desolvation, respectively. This substantially reduced the improvement in sensitivity observed for the desolvated aerosol. To further investigate the fundamental characteristics of the N2 MICAP-MS, the plasma gas temperature was estimated using three methods. The determined temperatures for the two most reliable methods were in the range of ∼5000-6000 K and were found to be independent of the sample introduction method and similar to those of an Ar ICP.

2.
J Anal At Spectrom ; 38(3): 758-765, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36911085

RESUMO

A high-power nitrogen-based microwave inductively coupled atmospheric-pressure plasma was coupled to a quadrupole mass spectrometer to investigate its characteristics as an ion source for element mass spectrometry. The influence of operating conditions on analyte sensitivity, plasma background, and polyatomic ion formation was investigated for conventional solution-based analysis. By varying the forward power and the nebulizer gas flow rate, the plasma background ions were found to decrease with increasing gas flow rates and decreasing operating power. Analyte ions showed different trends, which could be related to the physical-chemical properties of the elements. We could identify three groups based on the location of maximum intensity in the power vs. flow rate contour plot. Atomic ions of elements with low first ionization energy and low oxygen bond strength were found to maximize at a high nebulizer gas flow rate and lower microwave power. Elements with intermediate ionization energy and higher oxygen bond strength required higher power settings for optimum sensitivity, while elements with the highest ionization energies required the highest power and lowest gas flow rates for their optimization. The latter group showed a substantial suppression in sensitivity compared to elements of similar mass, which is considered to result from the high abundance of NO in the plasma source, whose ionization energy is close to that of these elements. Metal oxide ions were found at similar or higher abundances than in the conventional argon-based ICP and could be minimized only by using a low gas flow rate and high power settings. These general trends were also observed when the vacuum interface was modified. To change the dynamics of the supersonic expansion, different sampler cone orifice sizes and sampler-skimmer distances were investigated and the interface pressure was lowered through an additional pump. These modifications did not yield significant differences in ion transmission but lowering the interface pressure reduced the relative abundance of metal oxide ions. The limits of detection were evaluated for optimized plasma conditions and found comparable to those of an argon ICP source with the same mass spectrometer.

3.
Anal Chem ; 93(2): 1001-1008, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33290044

RESUMO

We present a prototype of a vertical-downward configuration of an inductively coupled plasma mass spectrometer (ICPMS) allowing the sample introduction from the top. With this novel approach to orient the ICP downward, we aim to expand the sample transport capabilities in ICPMS especially for the transport of droplets or particles with a final goal to analyze individual cells. Because of this gravity-assisted sampling approach, the transport of larger sized droplets, that is, droplets that would be difficult to transport into a horizontally oriented ICPMS, becomes possible and, furthermore, becomes independent of the droplets' size or size distribution. We demonstrate that droplets of an initial size of 70 µm can be successfully transported into the plasma at dispensing frequencies up to 1 kHz without the need for a desolvation device. In addition, we observed that the implementation of a desolvation device, that is, a gas-exchange device (GED), can improve the detection efficiencies (DEs). Compared to operating conditions that are commonly reported for ICPMS experiments, significantly different optimization parameters (radio frequency power and gas flow rates) were tested in the presented experiments here while instrument type-specific DEs were obtained.

4.
J Anal At Spectrom ; 36(8): 1750-1757, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34456415

RESUMO

Here we describe the first study of a nitrogen based inductively coupled plasma mass spectrometry system in conjunction with laser ablation (LA-(N2-ICP)-MS). Therefore, a microwave-sustained, inductively coupled, atmospheric-pressure plasma source was mounted onto the interface of a quadrupole ICP-MS to investigate the capabilities of such an instrument. The proof of concept study was focused on the quantification capabilities of major to trace elements. Therefore, the plasma background species under dry plasma conditions were investigated to identify the most suitable isotopes for the analysis and to describe the newly formed nitrogen plasma interferences. In addition, the instrumental drift was investigated. Selected elements in the reference materials NIST SRM 612 and BCR-2G were quantified using NIST SRM 610 as an external standard and could be determined within the uncertainty of the reference values. Finally, the limits of detection for LA-(N2-ICP)-MS and LA-(Ar-ICP)-MS were compared indicating similar or even lower LODs for most elements using LA-(N2-ICP)-MS. Therefore, a nitrogen plasma source coupled to a mass spectrometer could challenge the argon-sustained ICP-MS in element analysis by overcoming argon interferences and has the potential to reduce the plasma gas expenses significantly.

5.
Microsc Microanal ; : 1-9, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973509

RESUMO

The quantification of the particle size and the number concentration (PNC) of nanoparticles (NPs) is key for the characterization of nanomaterials. Transmission electron microscopy (TEM) is often considered as the gold standard for assessing the size of NPs; however, the TEM sample preparation suitable for estimating the PNC based on deposited NPs is challenging. Here, we use an ultrasonic nebulizer (USN) to transfer NPs from aqueous suspensions into dried aerosols which are deposited on TEM grids in an electrostatic precipitator of an aerosol monitor. The deposition efficiency of the electrostatic precipitator was ≈2%, and the transport efficiency of the USN was ≈7%. Experiments using SiO2 NPs (50­200 nm) confirmed an even deposition of the nebulized particles in the center of the TEM grids. PNCs of the SiO2 NPs derived from TEM images underestimated the expected PNCs of the suspensions by a factor of up to three, most likely resulting from droplet coagulation and NP aggregation in the USN. Nevertheless, single particles still dominated the PNC. Our approach results in reproducible and even deposition of particles on TEM grids suitable for morphological analysis and allows an estimation of the PNC in the suspensions based on the number of particles detected by TEM.

6.
Mol Microbiol ; 111(5): 1152-1166, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653750

RESUMO

Until recently, rare-earth elements (REEs) had been thought to be biologically inactive. This view changed with the discovery of the methanol dehydrogenase XoxF that strictly relies on REEs for its activity. Some methylotrophs only contain xoxF, while others, including the model phyllosphere colonizer Methylobacterium extorquens PA1, harbor this gene in addition to mxaFI encoding a Ca2+ -dependent enzyme. Here we found that REEs induce the expression of xoxF in M. extorquens PA1, while repressing mxaFI, suggesting that XoxF is the preferred methanol dehydrogenase in the presence of sufficient amounts of REE. Using reporter assays and a suppressor screen, we found that lanthanum (La3+ ) is sensed both in a XoxF-dependent and independent manner. Furthermore, we investigated the role of REEs during Arabidopsis thaliana colonization. Element analysis of the phyllosphere revealed the presence of several REEs at concentrations up to 10 µg per g dry weight. Complementary proteome analyses of M. extorquens PA1 identified XoxF as a top induced protein in planta and a core set of La3+ -regulated proteins under defined artificial media conditions. Among these was a REE-binding protein that is encoded next to a gene for a TonB-dependent transporter. The latter was essential for REE-dependent growth on methanol indicating chelator-assisted uptake of REEs.


Assuntos
Lantânio/metabolismo , Metanol/metabolismo , Methylobacterium extorquens/metabolismo , Oxirredutases do Álcool/metabolismo , Arabidopsis/microbiologia , Regulação Bacteriana da Expressão Gênica , Methylobacterium extorquens/crescimento & desenvolvimento , Proteoma
7.
Analyst ; 145(4): 1310-1318, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31935004

RESUMO

Isotopic studies are gaining much interest in heritage science, as they can provide insight into a material's age and provenance. Radiocarbon (14C) dating affords a time frame for the materials being studied, thus providing a historical context, whereas the specific pattern of lead isotope ratios may be used to set geographical constraints on the source of the original materials. Both methods require invasive sampling from the object, and henceforth limits their respective application. With the focus on lead white paint (2PbCO3·Pb(OH)2), in this study we extract the time of production of the pigment from the carbonate anion by radiocarbon dating while its origin is traced by lead isotope analysis on the cation. The methodology was applied to 12 British and 8 Swiss paintings from the 18th to 20th century, with known dates and provenance. The 14C analysis of the lead white in combination with the organic binder and canvas alone places all objects between the 17th and 20th centuries, which is in agreement with their signed date, wheras the lead isotope analysis of all samples are consistent with lead ores from European deposits. In most of the cases the combined results are consistent with the art historical data and prove that isotope analysis is intrinsic to the object. This feasibility study conducted on paintings of known age demonstrates the possibility to maximize the information output from lead white paint, thus increasing the benefits of a single sampling.

8.
Environ Sci Technol ; 53(21): 12458-12466, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31588741

RESUMO

In this study, we introduce a stochastic method to delineate the mineral effective surface area (ESA) evolution during a recycling reactive flow-through transport experiment on a sandstone under geologic reservoir conditions, with a focus on the dissolution of its dolomite cement, Ca1.05Mg0.75Fe0.2(CO3)2. CO2-enriched brine was circulated through this sandstone specimen for 137 cycles (∼270 h) to examine the evolution of in situ hydraulic properties and CO2-enriched brine-dolomite geochemical reactions. The bulk permeability of the sandstone specimen decreased from 356 mD before the reaction to 139 mD after the reaction, while porosity increased from 21.9 to 23.2% due to a solid volume loss of 0.25 mL. Chemical analyses on experimental effluents during the first cycle yielded a dolomite reactivity of ∼2.45 mmol m-3 s-1, a corresponding sample-averaged ESA of ∼8.86 × 10-4 m2/g, and an ESA coefficient of 1.36 × 10-2, indicating limited participation of the physically exposed mineral surface area. As the dissolution reaction progressed, the ESA is observed to first increase and then decrease. This change in ESA can be qualitatively reproduced employing scanning electron microscopy-image-based stochastic analyses on dolomite dissolution. These results provide a new approach to analyze and upscale the ESA during geochemical reactions, which are involved in a wide range of geoengineering operations.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono , Magnésio , Sais , Solubilidade
9.
Anal Bioanal Chem ; 411(3): 591-602, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30132057

RESUMO

Pulsed laser ablation sampling and sequential isotope detection can lead to signal beat in the registered signal intensities. In particular, if aerosol transport systems deliver ablated aerosol with temporal duration close to that of a single mass scan, such signal beat can become significant and lead to biased intensity ratios and concentrations. Averaging signal intensities based on the least common multiple of scan duration and laser pulse period can eliminate such a systematic bias and improve the accuracy of quantitative laser ablation experiments. The method was investigated for experiments using an ablation cell that provided aerosol washout times near 200 ms and quadrupole-based ICP-MS acquisition using different dwell and settling times that were compared with and extended by numerical simulations. It was found that the systematic bias of acquired data could exceed the inherent noise of laser ablation inductively couple plasma mass spectrometry experiments and that the averaging method could successfully minimize the bias due to beating. However, simulations revealed that this was only the case for combinations of pulse frequency and scan duration in which the number of laser pulses within the averaged period was an integer multiple of the number of isotopes in the acquisition method. In element imaging applications, this averaging will necessarily increase the size of individual pixels and it depends not only on the laser beam size but also pulse repetition rate and the acquisition settings for a sequential mass spectrometer. Graphical abstract LCM averaging can prevent occurrence of a systematic bias in LA-ICPMS measurements.

10.
Angew Chem Int Ed Engl ; 58(15): 4901-4905, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561882

RESUMO

Peptide-stabilized platinum nanoparticles (PtNPs) were developed that have significantly greater toxicity against hepatic cancer cells (HepG2) than against other cancer cells and non-cancerous liver cells. The peptide H-Lys-Pro-Gly-dLys-NH2 was identified by a combinatorial screening and further optimized to enable the formation of water-soluble, monodisperse PtNPs with average diameters of 2.5 nm that are stable for years. In comparison to cisplatin, the peptide-coated PtNPs are not only more toxic against hepatic cancer cells but have a significantly higher tumor cell selectivity. Cell viability and uptake studies revealed that high cellular uptake and an oxidative environment are key for the selective cytotoxicity of the peptide-coated PtNPs.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas/química , Compostos Organoplatínicos/farmacologia , Peptídeos/farmacologia , Platina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Tamanho da Partícula , Peptídeos/química , Platina/química , Relação Estrutura-Atividade , Propriedades de Superfície
11.
Anal Chem ; 90(22): 13443-13450, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30350630

RESUMO

We combine a recently developed high-power, nitrogen-sustained microwave plasma source-the Microwave Inductively Coupled Atmospheric-Pressure Plasma (MICAP)-with time-of-flight mass spectrometry (TOFMS) and provide the first characterization of this elemental mass spectrometry configuration. Motivations for assessment of this ionization source are scientific and budgetary: unlike the argon-sustained Inductively Coupled Plasma (ICP), the MICAP is sustained with nitrogen, which eliminates high operating costs associated with argon-gas consumption. Additionally, use of a commercial grade magnetron for microwave generation simplifies plasma-powering electronics. In this study, we directly compare MICAP-TOFMS performance with that of an argon-ICP as the atomic ionization source on the same TOFMS instrument. Initial results with the MICAP source demonstrate limits of detection and sensitivities that are, for most elements, on par with those of the ICP-TOFMS. The N2-MICAP source provides a much "cleaner" background spectrum than the ICP; absence of argon-based interferences greatly simplifies analysis of isotopes such as 40Ca, 56Fe, and 75As, which typically suffer from spectral interferences in ICP-MS. The major plasma species measured from the N2-MICAP source include NO+, N2+, N+, N3+, O2+, N4+, and H2O+; we observed no plasma-background species above mass-to-charge 60. Absence of troublesome argon-based spectral interferences is a compelling advantage of the MICAP source. For example, with MICAP-TOFMS, the limit of detection for arsenic is less than 100 ng L-1 even in a 1% NaCl solution; with ICP-MS, 35Cl40Ar+ interferes with 75As+ and arsenic analysis is difficult-to-impossible in chlorine-containing matrices.

12.
Angew Chem Int Ed Engl ; 57(26): 7697-7702, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29768706

RESUMO

Bismesitoylphosphinic acid, (HO)PO(COMes)2 (BAPO-OH), is an efficient photoinitiator for free-radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO-OH as the ligand. The complex CuII (BAPO-O)2 (H2 O)2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from CuII into Cu0 with half an equivalent of BAPO-OH, which serves as a four-electron photoreductant.

13.
Nat Methods ; 11(4): 417-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584193

RESUMO

Mass cytometry enables high-dimensional, single-cell analysis of cell type and state. In mass cytometry, rare earth metals are used as reporters on antibodies. Analysis of metal abundances using the mass cytometer allows determination of marker expression in individual cells. Mass cytometry has previously been applied only to cell suspensions. To gain spatial information, we have coupled immunohistochemical and immunocytochemical methods with high-resolution laser ablation to CyTOF mass cytometry. This approach enables the simultaneous imaging of 32 proteins and protein modifications at subcellular resolution; with the availability of additional isotopes, measurement of over 100 markers will be possible. We applied imaging mass cytometry to human breast cancer samples, allowing delineation of cell subpopulations and cell-cell interactions and highlighting tumor heterogeneity. Imaging mass cytometry complements existing imaging approaches. It will enable basic studies of tissue heterogeneity and function and support the transition of medicine toward individualized molecularly targeted diagnosis and therapies.


Assuntos
Neoplasias da Mama/metabolismo , Citometria por Imagem/métodos , Proteínas de Neoplasias/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteínas de Neoplasias/genética
14.
Anal Chem ; 88(14): 7281-8, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27306032

RESUMO

Doubly charged molecular ions of alkaline earth metals and argon could be identified as spectral interferences in an inductively coupled plasma mass spectrometer. These molecular ions were found to occur at abundances reaching about 10(-4) relative to the alkaline earth atomic ion abundances. They can thus substantially affect ultratrace analyses and, when present at similar concentration as the analyte elements, also isotope ratio measurements. For the case of Cu and Zn isotope ratio analyses, the same mass concentration of Sr was found to alter the measured (63)Cu/(65)Cu and (64)Zn/(66)Zn isotope ratios by -0.036‰ to -0.95‰ due to SrAr(2+), appearing at m/Q 63 and 64. BaAr(2+) can affect Sr isotope analyses, MgAr(2+) may impair S isotope ratio measurements, while CaAr(2+) may cause interference to Ca(+) isotopes. The abundances of the doubly charged molecular ions were higher than those of the corresponding singly charged species, which is in accordance with their generally higher bond dissociation energies. The relative abundances were found to depend significantly on the inductively coupled plasma (ICP) operating conditions and generally increase with increasing carrier gas flow rates or lower gas temperature of the ICP. They also increase by about an order of magnitude when a desolvated aerosol is introduced to the ICP.

15.
Anal Chem ; 88(17): 8570-6, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27396439

RESUMO

A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 µm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution.

16.
Chemphyschem ; 17(17): 2640-4, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27252087

RESUMO

Doubly charged diatomic ions MAr(2+) where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1 % for MgAr(2+) , 0.4 % for CaAr(2+) , 0.2 % for SrAr(2+) and 0.1 % for BaAr(2+) relative to the corresponding doubly charged atomic ions M(2+) . It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D0 ) were calculated and agree well with previously published values. The abundance ratios MAr(+) /M(+) and MAr(2+) /M(2+) generally follow the predicted bond dissociation energies with the exception of MgAr(2+) . Mg(2+) should form the strongest bond with Ar [D0 (MgAr(2+) )=124 to 130 kJ mol(-1) ] but its relative abundance is similar to that of the weakest bound BaAr(2+) (D0 =34 to 42 kJ mol(-1) ). The relative abundances of the various MAr(2+) ions are higher than those expected from an argon plasma at T=6000 K, indicating that collisions during ion extraction reduce the abundance of the MAr(2+) ions relative to the composition in the source. The corresponding singly charged MAr(+) ions are also observed but occur at about three orders of magnitude lower intensity than MAr(2+) .

17.
Anal Chem ; 87(16): 8250-8, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26122331

RESUMO

Low-dispersion laser ablation (LA) has been combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) to provide full-spectrum elemental imaging at high lateral resolution and fast image-acquisition speeds. The low-dispersion LA cell reported here is capable of delivering 99% of the total LA signal within 9 ms, and the prototype TOFMS instrument enables simultaneous and representative determination of all elemental ions from these fast-transient ablation events. This fast ablated-aerosol transport eliminates the effects of pulse-to-pulse mixing at laser-pulse repetition rates up to 100 Hz. Additionally, by boosting the instantaneous concentration of LA aerosol into the ICP with the use of a low-dispersion ablation cell, signal-to-noise (S/N) ratios, and thus limits of detection (LODs), are improved for all measured isotopes; the lowest LODs are in the single digit parts per million for single-shot LA signal from a 10-µm diameter laser spot. Significantly, high-sensitivity, multielemental and single-shot-resolved detection enables the use of small LA spot sizes to improve lateral resolution and the development of single-shot quantitative imaging, while also maintaining fast image-acquisition speeds. Here, we demonstrate simultaneous elemental imaging of major and minor constituents in an Opalinus clay-rock sample at a 1.5 µm laser-spot diameter and quantitative imaging of a multidomain Pallasite meteorite at a 10 µm LA-spot size.

18.
Anal Chem ; 87(16): 8259-67, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26185891

RESUMO

Here we describe the capabilities of laser-ablation coupled to inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) for high-speed, high-resolution, quantitative three-dimensional (3D) multielemental imaging. The basic operating principles of this instrumental setup and a verification of 3D quantitative elemental imaging are provided. To demonstrate the potential of 3D LA-ICP-TOFMS imaging, high-resolution multielement images of a cesium-infiltrated Opalinus clay rock were recorded using LA with a laser-spot diameter of 5 µm coupled to ICP-TOFMS. Quantification of elements ablated from each individual laser pulse was carried out by 100% mass normalization, and the 3D elemental concentration images generated match well with the expected distribution of elements. After laser-ablation imaging, the sample surface morphology was investigated using confocal microscopy, which showed substantial surface roughness and evidence of matrix-dependent ablation yields. Depth assignment based on ablation yields from heterogeneous materials, such as Opalinus clay rock, will remain a challenge for 3D LA-ICPMS imaging. Nevertheless, this study demonstrates quantitative 3D multielemental imaging of geological samples at a considerably higher image-acquisition speed than previously reported, while also offering high spatial resolution and simultaneous multielemental detection.

19.
Anal Chem ; 86(16): 8142-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25014784

RESUMO

This work investigated the potential of a high temporal resolution inductively coupled plasma time-of-flight mass spectrometer (ICPTOFMS) in combination with a microdroplet generator (MDG) for simultaneous mass quantification of different nanoparticles (NPs) in a mixture. For this purpose, a test system containing certified Au NPs, well characterized Ag NPs, and core-shell NPs composed of an Au core and an Ag shell was employed. Thanks to the full spectra coverage and rapid simultaneous detection of the TOFMS, the element composition of individual particles can be determined. The pure Ag NPs and the core-shell NPs could be differentiated despite the same mass of Ag they contain. Calibration with monodisperse droplets consisting of standard solutions allowed for the mass quantification of NPs without the use of NP certified materials. On the basis of this mass quantification, the sizes of NPs originating from the same aqueous suspension were simultaneously determined with an accuracy of 7-12%. The size-equivalent limits of detection estimated with the 3*σ criterion were 13 nm for Au and 16 nm for Ag. Estimation of the LODs using Poisson statistics resulted in 19 and 27 nm, respectively. In addition, the 30 µs temporal resolution of the ICPTOFMS allowed studying interactions of NPs with the ICP based on their transient MS signals. The results demonstrated a difference in vaporization behavior of the core-shell NPs and solutions and indicated that vaporization of the Ag shell takes place prior to the Au core.


Assuntos
Ouro/análise , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Prata/análise , Ouro/isolamento & purificação , Tamanho da Partícula , Prata/isolamento & purificação , Suspensões , Volatilização
20.
Chimia (Aarau) ; 68(4): 215-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983600

RESUMO

By focusing high-intensity laser pulses on carbonate samples carbon dioxide is generated and can be directly introduced into the gas ion source (GIS) of an Accelerator Mass Spectrometer (AMS). This new technique allows rapid radiocarbon analyses at high spatial resolution. The design of the deignated laser ablation cell as well as first results on a stalagmite sample are presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa