Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Methods ; 154: 10-20, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326272

RESUMO

The antibody drug market is rapidly expanding, and various antibody engineering technologies are being developed to create antibodies that can provide better benefit to patients. Although bispecific antibody drugs have been researched for more than 30 years, currently only a limited number of bispecific antibodies have achieved regulatory approval. Of the few successful examples of industrially manufacturing a bispecific antibody, the "common light chain format" is an elegant technology that simplifies the purification of a whole IgG-type bispecific antibody. Using this IgG format, the bispecific function can be introduced while maintaining the natural molecular shape of the antibody. In this article, we will first introduce the outline, prospects, and limitations of the common light chain format. Then, we will describe the identification and optimization process for ERY974, an anti-glypican-3 × anti-CD3ε T cell-redirecting bispecific antibody with a common light chain. This format includes one of Chugai's proprietary technologies, termed ART-Ig technology, which consists of a method to identify a common light chain, isoelectric point (pI) engineering to purify the desired bispecific IgG antibody from byproducts, and Fc heterodimerization by an electrostatic steering effect. Furthermore, we describe some tips for de-risking the antibody when engineering a T cell redirecting antibody.


Assuntos
Anticorpos Biespecíficos , Imunoglobulina G , Cadeias Leves de Imunoglobulina , Engenharia de Proteínas/métodos , Animais , Complexo CD3/imunologia , Glipicanas/imunologia , Humanos , Camundongos
2.
Immunol Rev ; 270(1): 132-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26864109

RESUMO

Monoclonal antibodies have become a general modality in therapeutic development, and a variety of monoclonal antibodies targeting soluble antigens have been developed. However, even with infinite binding affinity to an antigen, a conventional antibody can bind to the antigen only once and results in an increase in total plasma antigen concentration in vivo. This antibody-mediated antigen accumulation generally occurs because the clearance from circulation of an antibody-antigen complex is much slower than that of a free antigen. This limitation has recently been overcome by sweeping antibodies, which are capable of actively eliminating soluble antigens from circulation. A sweeping antibody incorporates two antibody engineering technologies: one is variable region engineering to enable the antibody to bind to an antigen in plasma and dissociate from the antigen in endosome (after which the antigen undergoes lysosomal degradation), and the other is constant region engineering to increase the cellular uptake of the antibody-antigen complex into endosome. By enhancing the elimination of soluble antigens from circulation, sweeping antibodies can therapeutically target soluble antigens that conventional antibodies cannot. This review discusses the features, engineering technologies, advantages, and applications of sweeping antibodies that target soluble antigens.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Antígenos/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Formação de Anticorpos , Antígenos/sangue , Descoberta de Drogas , Engenharia Genética/métodos , Humanos , Ligação Proteica/imunologia , Receptores Fc/metabolismo
3.
Br J Haematol ; 183(2): 257-266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125997

RESUMO

Activated protein C (APC) inactivates activated factor V (FVa) and moderates FVIIIa by restricting FV cofactor function. Emicizumab is a humanized anti-FIXa/FX bispecific monoclonal antibody that mimicks FVIIIa cofactor function. In recent clinical trials in haemophilia A patients, once-weekly subcutaneous administration of emicizumab was remarkably effective in preventing bleeding events, but the mechanisms controlling the regulation of emicizumab-mediated haemostasis remain to be explored. We investigated the role of APC-mediated reactions in these circumstances. APC dose-dependently depressed thrombin generation (TG) initiated by emicizumab in FVIII-deficient plasmas, and in normal plasmas preincubated with an anti-FVIII antibody (FVIII-depleted). FVIIIa-independent FXa generation with emicizumab was not affected by the presence of APC, protein S and FV. The results suggested that APC-induced down-regulation of emicizumab-dependent TG was accomplished by direct inactivation of FVa. The addition of APC to emicizumab mixed with FVIII-depleted FV-deficient plasma in the presence of various concentrations of exogenous FV demonstrated similar attenuation of TG, irrespective of specific FV concentrations. Emicizumab-related TG in FVIII-depleted FVLeiden plasma was decreased by APC more than that observed with native FVLeiden plasma. The findings indicated that emicizumab-driven haemostasis was down regulated by APC-mediated FVa inactivation in plasma from haemophilia A patients without or with FV defects.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Hemofilia A/sangue , Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Proteína C/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Fator VIIIa/metabolismo , Fator Va/metabolismo , Humanos , Proteína C/administração & dosagem , Trombina/biossíntese
4.
Exp Dermatol ; 27(1): 14-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27714851

RESUMO

Scratching is an important factor exacerbating skin lesions through the so-called itch-scratch cycle in atopic dermatitis (AD). In mice, interleukin (IL)-31 and its receptor IL-31 receptor A (IL-31RA) are known to play a critical role in pruritus and the pathogenesis of AD; however, study of their precise roles in primates is hindered by the low sequence homologies between primates and mice and the lack of direct evidence of itch sensation by IL-31 in primates. We showed that administration of cynomolgus IL-31 induces transient scratching behaviour in cynomolgus monkeys and by that were able to establish a monkey model of scratching. We then showed that a single subcutaneous injection of 1 mg/kg nemolizumab, a humanized anti-human IL-31RA monoclonal antibody that also neutralizes cynomolgus IL-31 signalling and shows a good pharmacokinetic profile in cynomolgus monkeys, suppressed the IL-31-induced scratching for about 2 months. These results suggest that the IL-31 axis and IL-31RA axis play as critical a role in the induction of scratching in primates as in mice and that the blockade of IL-31 signalling by an anti-human IL-31RA antibody is a promising therapeutic approach for treatment of AD. Nemolizumab is currently under investigation in clinical trials.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Interleucinas/farmacologia , Prurido/induzido quimicamente , Receptores de Interleucina/metabolismo , Células A549 , Animais , Células CHO , Linhagem Celular , Cricetulus , DNA Complementar/metabolismo , Humanos , Cinética , Macaca fascicularis , Masculino , Camundongos , Prurido/metabolismo , Transdução de Sinais , Pele/imunologia , Pele/patologia , Dermatopatias/imunologia , Dermatopatias/patologia
5.
J Immunol ; 195(7): 3198-205, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320252

RESUMO

Fc engineering can modulate the Fc-FcγR interaction and thus enhance the potency of Abs that target membrane-bound Ags, but it has not been applied to Abs that target soluble Ags. In this study, we revealed a previously unknown function of inhibitory FcγRII in vivo and, using an Ab that binds to Ag pH dependently, demonstrated that the function can be exploited to target soluble Ag. Because pH-dependent Ab dissociates Ag in acidic endosome, its Ag clearance from circulation reflects the cellular uptake rate of Ag/Ab complexes. In vivo studies showed that FcγR but not neonatal FcR contributes to Ag clearance by the pH-dependent Ab, and when Fc binding to mouse FcγRII and III was increased, Ag clearance was markedly accelerated in wild-type mice and FcR γ-chain knockout mice, but the effect was diminished in FcγRII knockout mice. This demonstrates that mouse FcγRII efficiently promotes Ab uptake into the cell and its subsequent recycling back to the cell surface. Furthermore, when a human IgG1 Fc variant with selectively increased binding to human FcγRIIb was tested in human FcγRIIb transgenic mice, Ag clearance was accelerated without compromising the Ab half-life. Taken together, inhibitory FcγRIIb was found to play a prominent role in the cellular uptake of monomeric Ag/Ab immune complexes in vivo, and when the Fc of a pH-dependent Ab was engineered to selectively enhance human FcγRIIb binding, the Ab could accelerate soluble Ag clearance from circulation. We assume such a function would enhance the therapeutic potency of Abs that target soluble Ags.


Assuntos
Complexo Antígeno-Anticorpo/sangue , Reações Antígeno-Anticorpo/imunologia , Antígenos/sangue , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos/sangue , Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos/imunologia , Humanos , Imunoglobulina G/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/genética
6.
Blood ; 124(20): 3165-71, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25274508

RESUMO

ACE910 is a humanized anti-factor IXa/X bispecific antibody mimicking the function of factor VIII (FVIII). We previously demonstrated in nonhuman primates that a single IV dose of ACE910 exerted hemostatic activity against hemophilic bleeds artificially induced in muscles and subcutis, and that a subcutaneous (SC) dose of ACE910 showed a 3-week half-life and nearly 100% bioavailability, offering support for effective prophylaxis for hemophilia A by user-friendly SC dosing. However, there was no direct evidence that such SC dosing of ACE910 would prevent spontaneous bleeds occurring in daily life. In this study, we newly established a long-term primate model of acquired hemophilia A by multiple IV injections of an anti-primate FVIII neutralizing antibody engineered in mouse-monkey chimeric form to reduce its antigenicity. The monkeys in the control group exhibited various spontaneous bleeding symptoms as well as continuous prolongation of activated partial thromboplastin time; notably, all exhibited joint bleeds, which are a hallmark of hemophilia. Weekly SC doses of ACE910 (initial 3.97 mg/kg followed by 1 mg/kg) significantly prevented these bleeding symptoms; notably, no joint bleeding symptoms were observed. ACE910 is expected to prevent spontaneous bleeds and joint damage in hemophilia A patients even with weekly SC dosing, although appropriate clinical investigation is required.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Fator IXa/imunologia , Fator X/imunologia , Hemofilia A/complicações , Hemorragia/complicações , Hemorragia/prevenção & controle , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Linhagem Celular , Modelos Animais de Doenças , Hemorragia/patologia , Humanos , Articulações/efeitos dos fármacos , Articulações/patologia , Macaca fascicularis , Masculino , Camundongos
7.
J Thromb Haemost ; 22(2): 430-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940048

RESUMO

BACKGROUND: Emicizumab, a factor (F) VIIIa-function mimetic bispecific antibody (BsAb) to FIXa and FX, has become an indispensable treatment option for people with hemophilia A (PwHA). However, a small proportion of PwHA still experience bleeds even under emicizumab prophylaxis, as observed in the long-term outcomes of clinical studies. A more potent BsAb may be desirable for such patients. OBJECTIVES: To identify a potent BsAb to FIXa and FX, NXT007, surpassing emicizumab by in vitro and in vivo evaluation. METHODS: New pairs of light chains for emicizumab's heavy chains were screened from phage libraries, and subsequent antibody optimization was performed. For in vitro evaluation, thrombin generation assays were performed with hemophilia A plasma. In vivo hemostatic activity was evaluated in a nonhuman primate model of acquired hemophilia A. RESULTS: NXT007 exhibited an in vitro thrombin generation activity comparable to the international standard activity of FVIII (100 IU/dL), much higher than emicizumab, when triggered by tissue factor. NXT007 also demonstrated a potent in vivo hemostatic activity at approximately 30-fold lower plasma concentrations than emicizumab's historical data. In terms of dose shift between NXT007 and emicizumab, the in vitro and in vivo results were concordant. Regarding pharmacokinetics, NXT007 showed lower in vivo clearance than those shown by typical monoclonal antibodies, suggesting that the Fc engineering to enhance FcRn binding worked well. CONCLUSION: NXT007, a potent BsAb, was successfully created. Nonclinical results suggest that NXT007 would have a potential to keep a nonhemophilic range of coagulation potential in PwHA or to realize more convenient dosing regimens than emicizumab.


Assuntos
Anticorpos Biespecíficos , Hemofilia A , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Trombina/metabolismo , Hemostasia , Coagulação Sanguínea , Fator VIII
8.
Nat Commun ; 14(1): 5789, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821442

RESUMO

The immunological basis of the clinical heterogeneity in autoimmune vasculitis remains poorly understood. In this study, we conduct single-cell transcriptome analyses on peripheral blood mononuclear cells (PBMCs) from newly-onset patients with microscopic polyangiitis (MPA). Increased proportions of activated CD14+ monocytes and CD14+ monocytes expressing interferon signature genes (ISGs) are distinctive features of MPA. Patient-specific analysis further classifies MPA into two groups. The MPA-MONO group is characterized by a high proportion of activated CD14+ monocytes, which persist before and after immunosuppressive therapy. These patients are clinically defined by increased monocyte ratio in the total PBMC count and have a high relapse rate. The MPA-IFN group is characterized by a high proportion of ISG+ CD14+ monocytes. These patients are clinically defined by high serum interferon-alpha concentrations and show good response to immunosuppressive therapy. Our findings identify the immunological phenotypes of MPA and provide clinical insights for personalized treatment and accurate prognostic prediction.


Assuntos
Imunossupressores , Poliangiite Microscópica , Humanos , Imunossupressores/uso terapêutico , Poliangiite Microscópica/genética , Poliangiite Microscópica/tratamento farmacológico , Leucócitos Mononucleares , Multiômica , Fenótipo , Monócitos
9.
MAbs ; 14(1): 2068213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482905

RESUMO

A conventional antibody targeting a soluble antigen in circulation typically requires a huge dosage and frequent intravenous administration to neutralize the antigen. This is because antigen degradation is reduced by the formation of antigen-antibody immune complexes, which escape from lysosomal degradation using neonatal Fc receptor (FcRn)-mediated recycling. To address this, we developed an antigen-sweeping antibody that combines pH-dependent antigen binding and Fc engineering to enhance Fc receptor binding. The sweeping antibody actively eliminates the plasma antigens by increasing the cellular uptake of the immune complex and dissociating the antigens in the acidic endosome for degradation. Strong antigen sweeping can reduce the dosage, potentially achieve higher efficacy, and expand the scope of antigen space available for targeting by antibodies. In this study, to further improve the sweeping efficacy, we developed a novel antibody Fc variant by enhancing Fcγ receptor IIb (FcγRIIb) binding and modulating charge characteristics for increased cellular uptake of the immune complex, together with enhancing FcRn binding for efficient salvage of the antigen-free antibodies. Our Fc variant achieved strong antigen sweeping in cynomolgus monkeys with antibody pharmacokinetics comparable to a wild-type human IgG1 antibody. The positive-charge substitutions enhanced uptake of the immune complex by FcγRIIb-expressing cells in vitro, which was completely inhibited by an anti-FcγRIIb antibody. This suggests that the strong in vivo sweeping efficacy improved by the charge engineering is more likely achieved by FcγRIIb-dependent uptake of the immune complex rather than nonspecific uptake. We expect this novel Fc engineering can maximize the antigen sweeping efficacy even in humans and create novel therapeutic antibodies that meet unmet medical needs for patients.


Assuntos
Complexo Antígeno-Anticorpo , Antígenos , Animais , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas , Macaca fascicularis
10.
Sci Rep ; 11(1): 2160, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495503

RESUMO

Myostatin, a member of the transforming growth factor-ß superfamily, is an attractive target for muscle disease therapy because of its role as a negative regulator of muscle growth and strength. Here, we describe a novel antibody therapeutic approach that maximizes the potential of myostatin-targeted therapy. We generated an antibody, GYM329, that specifically binds the latent form of myostatin and inhibits its activation. Additionally, via "sweeping antibody technology", GYM329 reduces or "sweeps" myostatin in the muscle and plasma. Compared with conventional anti-myostatin agents, GYM329 and its surrogate antibody exhibit superior muscle strength-improvement effects in three different mouse disease models. We also demonstrate that the superior efficacy of GYM329 is due to its myostatin specificity and sweeping capability. Furthermore, we show that a GYM329 surrogate increases muscle mass in normal cynomolgus monkeys without any obvious toxicity. Our findings indicate the potential of GYM329 to improve muscle strength in patients with muscular disorders.


Assuntos
Anticorpos Monoclonais/farmacologia , Força Muscular/efeitos dos fármacos , Doenças Musculares/fisiopatologia , Miostatina/imunologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Diferenciação de Crescimento/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Tamanho do Órgão , Transdução de Sinais
11.
Anticancer Drugs ; 21(10): 907-16, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20847643

RESUMO

Glypican 3 (GPC3), a glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan, is expressed in a majority of hepatocellular carcinoma tissues. The murine monoclonal antibody GC33 that specifically binds to the COOH-terminal part of GPC3 causes strong antibody-dependent cellular cytotoxicity against hepatocellular carcinoma cells and exhibits strong antitumor activity in the xenograft models. To apply GC33 for clinical use, we generated a humanized GC33 from complementarity-determining region grafting with the aid of both the hybrid variable region and two-step design methods. The humanized antibody bound to GPC3 specifically and induced antibody-dependent cellular cytotoxicity as effectively as a chimeric GC33 antibody. To improve stability of the humanized GC33, we further optimized humanized GC33 by replacing the amino acid residues that may affect the structure of the variable region of a heavy chain. Substitution of Glu6 with Gln in the heavy chain significantly improved the stability under high temperatures. GC33 also has the risk of deamidation of the -Asn-Gly- sequence in the complementarity-determining region 1 of the light chain. As substitution of Asn diminished the antigen binding, we changed the neighboring Gly to Arg to avoid deamidation. The resulting humanized anti-GPC3 antibody was as efficacious as chimeric GC33 against the HepG2 xenograft and is now being evaluated in clinical trials.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Glipicanas/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Carcinoma Hepatocelular/patologia , Regiões Determinantes de Complementaridade/imunologia , Desenho de Fármacos , Humanos , Região Variável de Imunoglobulina/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Estabilidade Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Chem Pharm Bull (Tokyo) ; 58(1): 38-44, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20045964

RESUMO

Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is regarded as a promising target for developing new anticoagulant drugs. In previous reports, we described a S3 subsite found in the X-ray crystal structure of compound 2 that bound to FVIIa/soluble tissue factor (sTF). Based on the X-ray crystal structure information and with the aim of improving the inhibition activity for FVIIa/TF and selectivity against other serine proteases, we synthesized derivatives by introducing substituents at position 5 of the indole ring of compound 2. Among them, compound 16 showed high selectivity against other serine proteases. Contrary to our expectations, compound 16 did not occupy the S3-subsite; X-ray structure analysis revealed that compound 16 improved selectivity by forming hydrogen bonds with Gln217, Thr99 and Asn100.


Assuntos
Fator VIIa/antagonistas & inibidores , Fator VIIa/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Biomimética , Cristalografia por Raios X , Fator VIIa/química , Modelos Moleculares , Ligação Proteica , Tromboplastina/antagonistas & inibidores , Tromboplastina/química , Tromboplastina/metabolismo
13.
Cell Rep ; 33(12): 108542, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357423

RESUMO

The extracellular adenosine triphosphate (ATP) concentration is highly elevated in the tumor microenvironment (TME) and remains tightly regulated in normal tissues. Using phage display technology, we establish a method to identify an antibody that can bind to an antigen only in the presence of ATP. Crystallography analysis reveals that ATP bound in between the antibody-antigen interface serves as a switch for antigen binding. In a transgenic mouse model overexpressing the antigen systemically, the ATP switch antibody binds to the antigen in tumors with minimal binding in normal tissues and plasma and inhibits tumor growth. Thus, we demonstrate that elevated extracellular ATP concentration can be exploited to specifically target the TME, giving therapeutic antibodies the ability to overcome on-target off-tumor toxicity.


Assuntos
Trifosfato de Adenosina/metabolismo , Anticorpos/metabolismo , Espaço Extracelular/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral
14.
Cancer Res ; 67(3): 1184-92, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283154

RESUMO

Cross-linked human leukocyte antigen (HLA) class I molecules have been shown to mediate cell death in neoplastic lymphoid cells. However, clinical application of an anti-HLA class I antibody is limited by possible side effects due to widespread expression of HLA class I molecules in normal tissues. To reduce the unwanted Fc-mediated functions of the therapeutic antibody, we have developed a recombinant single-chain Fv diabody (2D7-DB) specific to the alpha2 domain of HLA-A. Here, we show that 2D7-DB specifically induces multiple myeloma cell death in the bone marrow environment. Both multiple myeloma cell lines and primary multiple myeloma cells expressed HLA-A at higher levels than normal myeloid cells, lymphocytes, or hematopoietic stem cells. 2D7-DB rapidly induced Rho activation and robust actin aggregation that led to caspase-independent death in multiple myeloma cells. This cell death was completely blocked by Rho GTPase inhibitors, suggesting that Rho-induced actin aggregation is crucial for mediating multiple myeloma cell death. Conversely, 2D7-DB neither triggered Rho-mediated actin aggregation nor induced cell death in normal bone marrow cells despite the expression of HLA-A. Treatment with IFNs, melphalan, or bortezomib enhanced multiple myeloma cell death induced by 2D7-DB. Furthermore, administration of 2D7-DB resulted in significant tumor regression in a xenograft model of human multiple myeloma. These results indicate that 2D7-DB acts on multiple myeloma cells differently from other bone marrow cells and thus provide the basis for a novel HLA class I-targeting therapy against multiple myeloma.


Assuntos
Antígenos HLA-A/imunologia , Imunização Passiva/métodos , Fragmentos de Imunoglobulinas/farmacologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Morte Celular/imunologia , Linhagem Celular Tumoral , Citocinas/farmacologia , Ativação Enzimática , Antígenos HLA-A/biossíntese , Humanos , Células Jurkat , Camundongos , Camundongos SCID , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rho de Ligação ao GTP/metabolismo
15.
Methods Mol Biol ; 1904: 213-230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30539472

RESUMO

Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physicochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Expressão Gênica , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Camundongos , Mutação , Estabilidade Proteica , Proteínas Recombinantes
16.
Bioorg Med Chem Lett ; 18(16): 4533-7, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18674905

RESUMO

Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is regarded as a promising target for developing new anticoagulant drugs. Compound 1 was discovered from focused screening of serine protease-directed compounds from our internal collection. Using parallel synthesis supported by structure-based drug design, we identified peptidemimetic FVIIa/TF inhibitors (compounds 4-11) containing L-Gln or L-Met as the P2 moiety. However, these compounds lacked the selectivity of other serine proteases in the coagulation cascade, especially thrombin. Further optimization of these compounds was carried out with a focus on the P4 moiety. Among the optimized compounds, 12b-f showed improved selectivity.


Assuntos
Química Farmacêutica/métodos , Fator VIIa/antagonistas & inibidores , Serina Endopeptidases/farmacologia , Inibidores de Serina Proteinase/síntese química , Tromboembolia/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Cinética , Modelos Químicos , Conformação Molecular , Peptídeos/química , Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Tromboembolia/enzimologia
17.
PLoS One ; 13(12): e0209509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30592762

RESUMO

Modulating the complement system is a promising strategy in drug discovery for disorders with uncontrolled complement activation. Although some of these disorders can be effectively treated with an antibody that inhibits complement C5, the high plasma concentration of C5 requires a huge dosage and frequent intravenous administration. Moreover, a conventional anti-C5 antibody can cause C5 to accumulate in plasma by reducing C5 clearance when C5 forms an immune complex (IC) with the antibody, which can be salvaged from endosomal vesicles by neonatal Fc receptor (FcRn)-mediated recycling. In order to neutralize the increased C5, an even higher dosage of the antibody would be required. This antigen accumulation can be suppressed by giving the antibody a pH-dependent C5-binding property so that C5 is released from the antibody in the acidic endosome and then trafficked to the lysosome for degradation, while the C5-free antibody returns back to plasma. We recently demonstrated that a pH-dependent C5-binding antibody, SKY59, exhibited long-lasting neutralization of C5 in cynomolgus monkeys, showing potential for subcutaneous delivery or less frequent administration. Here we report the details of the antibody engineering involved in generating SKY59, from humanizing a rabbit antibody to improving the C5-binding property. Moreover, because the pH-dependent C5-binding antibodies that we first generated still accumulated C5, we hypothesized that the surface charges of the ICs partially contributed to a slow uptake rate of the C5-antibody ICs. This idea motivated us to engineer the surface charges of the antibody. Our surface-charge engineered antibody consequently exhibited a high capacity to sweep C5 and suppressed the C5 accumulation in vivo by accelerating the cycle of sweeping: uptake of ICs into cells, release of C5 from the antibody in endosomes, and salvage of the antigen-free antibody. Thus, our engineered anti-C5 antibody, SKY59, is expected to provide significant benefits for patients with complement-mediated disorders.


Assuntos
Anticorpos Monoclonais/genética , Ativação do Complemento/efeitos dos fármacos , Complemento C5/antagonistas & inibidores , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Ativação do Complemento/imunologia , Complemento C5/imunologia , Complemento C5/isolamento & purificação , Simulação por Computador , Descoberta de Drogas/métodos , Endossomos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Concentração de Íons de Hidrogênio , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/imunologia , Macaca fascicularis , Camundongos , Camundongos Transgênicos , Mutagênese , Receptores Fc/genética , Receptores Fc/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Tempo
19.
MAbs ; 9(5): 844-853, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387635

RESUMO

Various studies have demonstrated that Fc engineering to enhance neonatal Fc receptor (FcRn) binding is effective for elongating half-life or increasing cellular uptake of IgG. A previous study has shown that a N434H mutation to enhance FcRn binding resulted in increased binding to rheumatoid factor (RF) autoantibody, which is not desirable for therapeutic use in autoimmune disease. In this study, we first showed that all the existing Fc variants with enhanced FcRn binding also show increased RF binding, and then identified specific mutations that could be introduced to those Fc variants to reduce the RF binding. Furthermore, we generated novel Fc variants that do not increase RF binding and show half-lives of 45 d in cynomolgus monkey, which is longer than those of previously reported Fc variants. In addition, we generated novel Fc variants with antigen sweeping activity that do not increase RF binding. We expect that these novel Fc variants will be useful as antibody therapeutics against autoimmune diseases.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Fator Reumatoide/imunologia , Substituição de Aminoácidos , Animais , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/química , Imunoglobulina G/genética , Macaca fascicularis , Camundongos , Receptores Fc/química , Receptores Fc/genética , Fator Reumatoide/química
20.
Thromb Haemost ; 117(7): 1348-1357, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28451690

RESUMO

Emicizumab, a humanised bispecific antibody recognising factors (F) IX/IXa and X/Xa, can accelerate FIXa-catalysed FX activation by bridging FIXa and FX in a manner similar to FVIIIa. However, details of the emicizumab-antigen interactions have not been reported so far. In this study, we first showed by surface plasmon resonance analysis that emicizumab bound FIX, FIXa, FX, and FXa with moderate affinities (KD = 1.58, 1.52, 1.85, and 0.978 µM, respectively). We next showed by immunoblotting analysis that emicizumab recognised the antigens' epidermal growth factor (EGF)-like domains. We then performed KD-based simulation of equilibrium states in plasma for quantitatively predicting the ways that emicizumab would interact with the antigens. The simulation predicted that only a small part of plasma FIX, FX, and emicizumab would form antigen-bridging FIX-emicizumab-FX ternary complex, of which concentration would form a bell-shaped relationship with emicizumab concentration. The bell-shaped concentration dependency was reproduced by plasma thrombin generation assays, suggesting that the plasma concentration of the ternary complex would correlate with emicizumab's cofactor activity. The simulation also predicted that at 10.0-100 µg/ml of emicizumab-levels shown in a previous study to be clinically effective-the majority of plasma FIX, FX, and emicizumab would exist as monomers. In conclusion, emicizumab binds FIX/FIXa and FX/FXa with micromolar affinities at their EGF-like domains. The KD-based simulation predicted that the antigen-bridging ternary complex formed in circulating plasma would correlate with emicizumab's cofactor activity, and the majority of FIX and FX would be free and available for other coagulation reactions.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Fator VIIIa/imunologia , Anticorpos Biespecíficos/sangue , Anticorpos Monoclonais Humanizados/sangue , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Sítios de Ligação , Materiais Biomiméticos/farmacologia , Simulação por Computador , Fator IX/antagonistas & inibidores , Fator IX/imunologia , Fator IXa/antagonistas & inibidores , Fator IXa/imunologia , Fator X/antagonistas & inibidores , Fator X/imunologia , Fator Xa/imunologia , Inibidores do Fator Xa/sangue , Inibidores do Fator Xa/imunologia , Inibidores do Fator Xa/farmacologia , Humanos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa