Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 809: 151176, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699835

RESUMO

Reefs are biogenic structures that result in three-dimensional accumulations of calcium carbonate. Over geological timescales, a positive balance between the production and accumulation of calcium carbonate versus erosional and off-reef transport processes maintains positive net accretion on reefs. Yet, how ecological processes occurring over decadal timescales translate to the accumulation of geological structures is poorly understood, in part due to a lack of studies with detailed time-constrained chronologies of reef accretion over decades to centuries. Here, we combined ecological surveys of living reefs with palaeoecological reconstructions and high-precision radiometric (U-Th) age-dating of fossil reefs represented in both reef sediment cores and surficial dead in situ corals, to reconstruct the history of community composition and carbonate accumulation across the central and southern Saudi Arabian Red Sea throughout the late Holocene. We found that reefs were primarily comprised of thermally tolerant massive Porites colonies, creating a consolidated coral framework, with unconsolidated branching coral rubble accumulating among massive corals on shallow (5-8 m depth) exposed (windward), and gently sloping reef slopes. These unconsolidated reef rubble fields were formed primarily from ex situ Acropora and Pocillopora coral fragments, infilled post deposition within a sedimentary matrix. Bayesian age-depth models revealed a process of punctuated deposition of post-mortem coral fragments transported from adjacent reef environments. That a large portion of Saudi Arabian Red Sea reef slopes is driven by allochthonous deposition (transportation) has important implications for modeling carbonate budgets and reef growth. In addition, a multi-decadal lag exists between the time of death for branching in situ coral and incorporation into the unconsolidated reef rubble. This indicates that recent climate related degradation in the 21st century has not had an immediately negative effect on reef building processes affecting a large portion of the reef area in the Saudi Arabian Red Sea.


Assuntos
Antozoários , Recifes de Corais , Animais , Teorema de Bayes , Oceano Índico , Arábia Saudita
2.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542110

RESUMO

Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean.


Assuntos
Organismos Aquáticos/fisiologia , Audição , Ruído , Animais , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa