Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2220558120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831744

RESUMO

The use of formal privacy to protect the confidentiality of responses in the 2020 Decennial Census of Population and Housing has triggered renewed interest and debate over how to measure the disclosure risks and societal benefits of the published data products. We argue that any proposal for quantifying disclosure risk should be based on prespecified, objective criteria. We illustrate this approach to evaluate the absolute disclosure risk framework, the counterfactual framework underlying differential privacy, and prior-to-posterior comparisons. We conclude that satisfying all the desiderata is impossible, but counterfactual comparisons satisfy the most while absolute disclosure risk satisfies the fewest. Furthermore, we explain that many of the criticisms levied against differential privacy would be levied against any technology that is not equivalent to direct, unrestricted access to confidential data. More research is needed, but in the near term, the counterfactual approach appears best-suited for privacy versus utility analysis.


Assuntos
Confidencialidade , Revelação , Privacidade , Medição de Risco , Censos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa